A state-space model of cross-region dynamic connectivity in MEG/EEG

Neural Information Processing Systems 

Cross-region dynamic connectivity, which describes spatio-temporal dependence of neural activity among multiple brain regions of interest (ROIs), can provide important information for understanding cognition. For estimating such connectivity, magnetoencephalography (MEG) and electroencephalography (EEG) are well-suited tools because of their millisecond temporal resolution. However, localizing source activity in the brain requires solving an under-determined linear problem. In typical two-step approaches, researchers first solve the linear problem with general priors assuming independence across ROIs, and secondly quantify cross-region connectivity. In this work, we propose a one-step state-space model to improve estimation of dynamic connectivity.