BiScope: AI-generated Text Detection by Checking Memorization of Preceding Tokens
–Neural Information Processing Systems
Detecting text generated by Large Language Models (LLMs) is a pressing need in order to identify and prevent misuse of these powerful models in a wide range of applications, which have highly undesirable consequences such as misinformation and academic dishonesty. Given a piece of subject text, many existing detection methods work by measuring the difficulty of LLM predicting the next token in the text from their prefix. In this paper, we make a critical observation that how well the current token's output logits memorizes the closely preceding input tokens also provides strong evidence. Therefore, we propose a novel bi-directional calculation method that measures the cross-entropy losses between an output logits and the ground-truth token (forward) and between the output logits and the immediately preceding input token (backward). A classifier is trained to make the final prediction based on the statistics of these losses.
Neural Information Processing Systems
Mar-17-2025, 17:44:19 GMT
- Technology: