Causal Discovery from Event Sequences by Local Cause-Effect Attribution

Neural Information Processing Systems 

Sequences of events, such as crashes in the stock market or outages in a network, contain strong temporal dependencies, whose understanding is crucial to react to and influence future events. In this paper, we study the problem of discovering the underlying causal structure from event sequences. To this end, we introduce a new causal model, where individual events of the cause trigger events of the effect with dynamic delays. We show that in contrast to existing methods based on Granger causality, our model is identifiable for both instant and delayed effects.We base our approach on the Algorithmic Markov Condition, by which we identify the true causal network as the one that minimizes the Kolmogorov complexity. As the Kolmogorov complexity is not computable, we instantiate our model using Minimum Description Length and show that the resulting score identifies the causal direction.