Technology
Primitive Manipulation Learning with Connectionism
Infants' manipulative exploratory behavior within the environment is a vehicle of cognitive stimulation[McCall 1974]. During this time, infants practice and perfect sensorimotor patterns that become behavioral modules which will be seriated and imbedded in more complex actions. This paper explores the development of such primitive learning systems using an embodied lightweight hand which will be used for a humanoid being developed at the MIT Artificial Intelligence Laboratory[Brooks and Stein 1993]. Primitive grasping procedures are learned from sensory inputs using a connectionist reinforcement algorithm while two submodules preprocess sensory data to recognize the hardness of objects and detect shear using competitive learning and back-propagation algorithm strategies, respectively. This system is not only consistent and quick during the initial learning stage, but also adaptable to new situations after training is completed.
High-Speed Airborne Particle Monitoring Using Artificial Neural Networks
Ferguson, Alistair, Sabisch, Theo, Kaye, Paul, Dixon, Laurence C., Bolouri, Hamid
An instrument to detect particle shape and size from spatial light scattering profiles has High-speed Airborne Particle Monitoring Using Artificial Neural Networks 981 previously been described [6]. The system constrains individual particles to traverse a laser beam. Thus, spatial distributions of the light scattered by individual particles may be recorded as two dimensional grey-scale images. Due to their highly distributed nature, Artificial Neural Networks (ANNs) offer the possibility of high-speed nonlinear pattern classification. Their use in particulate classification has already been investigated. The work by Kohlus [7] used contour data extracted from microscopic images of particles, and so was not real-time. While using laser scattering data to allow real-time analysis, Bevan [2] used only three photomultipliers, from which very little shape information can be collected. This paper demonstrates the plausibility of particle classification based on shape recognition using an ANN. While capable of similar recognition rates, the neural networks are shown to offer a number of advantages over template matching.
Human Face Detection in Visual Scenes
Rowley, Henry A., Baluja, Shumeet, Kanade, Takeo
We present a neural network-based face detection system. A retinally connected neural network examines small windows of an image, and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We use a bootstrap algorithm for training, which adds false detections into the training set as training progresses. This eliminates the difficult task of manually selecting non-face training examples, which must be chosen to span the entire space of non-face images.
From Isolation to Cooperation: An Alternative View of a System of Experts
Schaal, Stefan, Atkeson, Christopher G.
We introduce a constructive, incremental learning system for regression problems that models data by means of locally linear experts. In contrast to other approaches, the experts are trained independently and do not compete for data during learning. Only when a prediction for a query is required do the experts cooperate by blending their individual predictions. Each expert is trained by minimizing a penalized local cross validation error using second order methods. In this way, an expert is able to find a local distance metric by adjusting the size and shape of the receptive field in which its predictions are valid, and also to detect relevant input features by adjusting its bias on the importance of individual input dimensions. We derive asymptotic results for our method. In a variety of simulations the properties of the algorithm are demonstrated with respect to interference, learning speed, prediction accuracy, feature detection, and task oriented incremental learning.
KODAK lMAGELINK™ OCR Alphanumeric Handprint Module
Shustorovich, Alexander, Thrasher, Christopher W.
There are two neural network algorithms at its cme: the first network is trained to find individual characters in an alphamuneric field, while the second one perfmns the classification. Both networks were trained on Gabor projections of the ociginal pixel images, which resulted in higher recognition rates and greater noise immunity. Compared to its purely numeric counterpart (Shusurovich and Thrasher, 1995), this version of the system has a significant applicatim specific postprocessing module. The system has been implemented in specialized parallel hardware, which allows it to run at 80 char/sec/board. It has been installed at the Driver and Vehicle Licensing Agency (DVLA) in the United Kingdom.
Modern Analytic Techniques to Solve the Dynamics of Recurrent Neural Networks
Coolen, A.C.C., Laughton, S. N., Sherrington, D.
We describe the use of modern analytical techniques in solving the dynamics of symmetric and nonsymmetric recurrent neural networks near saturation. These explicitly take into account the correlations between the post-synaptic potentials, and thereby allow for a reliable prediction of transients. 1 INTRODUCTION Recurrent neural networks have been rather popular in the physics community, because they lend themselves so naturally to analysis with tools from equilibrium statistical mechanics. This was the main theme of physicists between, say, 1985 and 1990. Less familiar to the neural network community is a subsequent wave of theoretical physical studies, dealing with the dynamics of symmetric and nonsymmetric recurrent networks. The strategy here is to try to describe the processes at a reduced level of an appropriate small set of dynamic macroscopic observables.
Visual gesture-based robot guidance with a modular neural system
Littmann, Enno, Drees, Andrea, Ritter, Helge
We report on the development of the modular neural system "SEE EAGLE" for the visual guidance of robot pick-and-place actions. Several neural networks are integrated to a single system that visually recognizes human hand pointing gestures from stereo pairs of color video images. The output of the hand recognition stage is processed by a set of color-sensitive neural networks to determine the cartesian location of the target object that is referenced by the pointing gesture. Finally, this information is used to guide a robot to grab the target object and put it at another location that can be specified by a second pointing gesture. The accuracy of the current system allows to identify the location of the referenced target object to an accuracy of 1 cm in a workspace area of 50x50 cm.
Selective Attention for Handwritten Digit Recognition
Completely parallel object recognition is NPcomplete. Achieving a recognizer with feasible complexity requires a compromise between parallel and sequential processing where a system selectively focuses on parts of a given image, one after another. Successive fixations are generated to sample the image and these samples are processed and abstracted to generate a temporal context in which results are integrated over time. A computational model based on a partially recurrent feedforward network is proposed and made credible by testing on the real-world problem of recognition of handwritten digits with encouraging results.
Harmony Networks Do Not Work
Harmony networks have been proposed as a means by which connectionist models can perform symbolic computation. Indeed, proponents claim that a harmony network can be built that constructs parse trees for strings in a context free language. This paper shows that harmony networks do not work in the following sense: they construct many outputs that are not valid parse trees. In order to show that the notion of systematicity is compatible with connectionism, Paul Smolensky, Geraldine Legendre and Yoshiro Miyata (Smolensky, Legendre, and Miyata 1992; Smolen sky 1993; Smolen sky, Legendre, and Miyata 1994) proposed a mechanism, "Harmony Theory," by which connectionist models purportedly perform structure sensitive operations without implementing classical algorithms. Harmony theory describes a "harmony network" which, in the course of reaching a stable equilibrium, apparently computes parse trees that are valid according to the rules of a particular context-free grammar.