Goto

Collaborating Authors

 Technology


Connectionist Architectures for Multi-Speaker Phoneme Recognition

Neural Information Processing Systems

We present a number of Time-Delay Neural Network (TDNN) based architectures for multi-speaker phoneme recognition (/b,d,g/ task). We use speech of two females and four males to compare the performance of the various architectures against a baseline recognition rate of 95.9% for a single IDNN on the six-speaker /b,d,g/ task. This series of modular designs leads to a highly modular multi-network architecture capable of performing the six-speaker recognition task at the speaker dependent rate of 98.4%. In addition to its high recognition rate, the so-called "Meta-Pi" architecture learns - without direct supervision - to recognize the speech of one particular male speaker using internal models of other male speakers exclusively.


Effects of Firing Synchrony on Signal Propagation in Layered Networks

Neural Information Processing Systems

Spiking neurons which integrate to threshold and fire were used to study the transmission of frequency modulated (FM) signals through layered networks. Firing correlations between cells in the input layer were found to modulate the transmission of FM signals under certain dynamical conditions. A tonic level of activity was maintained by providing each cell with a source of Poissondistributed synaptic input. When the average membrane depolarization produced by the synaptic input was sufficiently below threshold, the firing correlations between cells in the input layer could greatly amplify the signal present in subsequent layers. When the depolarization was sufficiently close to threshold, however, the firing synchrony between cells in the initial layers could no longer effect the propagation of FM signals. In this latter case, integrateand-fire neurons could be effectively modeled by simpler analog elements governed by a linear input-output relation.



Optimal Brain Damage

Neural Information Processing Systems

We have used information-theoretic ideas to derive a class of practical and nearly optimal schemes for adapting the size of a neural network. By removing unimportant weights from a network, several improvements can be expected: better generalization, fewer training examples required, and improved speed of learning and/or classification. The basic idea is to use second-derivative information to make a tradeoff between network complexity and training set error. Experiments confirm the usefulness of the methods on a real-world application. 1 INTRODUCTION Most successful applications of neural network learning to real-world problems have been achieved using highly structured networks of rather large size [for example (Waibel, 1989; Le Cun et al., 1990a)]. As applications become more complex, the networks will presumably become even larger and more structured.


Time Dependent Adaptive Neural Networks

Neural Information Processing Systems

Fernando J. Pineda Center for Microelectronics Technology Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 ABSTRACT A comparison of algorithms that minimize error functions to train the trajectories of recurrent networks, reveals how complexity is traded off for causality. These algorithms are also related to time-independent fonnalisms. It is suggested that causal and scalable algorithms are possible when the activation dynamics of adaptive neurons is fast compared to the behavior to be learned. Standard continuous-time recurrent backpropagation is used in an example. 1 INTRODUCTION Training the time dependent behavior of a neural network model involves the minimization of a function that measures the difference between an actual trajectory and a desired trajectory. The standard method of accomplishing this minimization is to calculate the gradient of an error function with respect to the weights of the system and then to use the gradient in a minimization algorithm (e.g.


Non-Boltzmann Dynamics in Networks of Spiking Neurons

Neural Information Processing Systems

We study networks of spiking neurons in which spikes are fired as a Poisson process. The state of a cell is determined by the instantaneous firing rate, and in the limit of high firing rates our model reduces to that studied by Hopfield. We find that the inclusion of spiking results in several new features, such as a noise-induced asymmetry between "on" and "off" states of the cells and probability currents which destroy the usual description of network dynamics in terms of energy surfaces. Taking account of spikes also allows us to calibrate network parameters such as "synaptic weights" against experiments on real synapses. Realistic forms of the post synaptic response alters the network dynamics, which suggests a novel dynamical learning mechanism.


A Neural Network for Feature Extraction

Neural Information Processing Systems

The paper suggests a statistical framework for the parameter estimation problem associated with unsupervised learning in a neural network, leading to an exploratory projection pursuit network that performs feature extraction, or dimensionality reduction.


Combining Visual and Acoustic Speech Signals with a Neural Network Improves Intelligibility

Neural Information Processing Systems

Compensatory information is available from the visual speech signals around the speaker's mouth. Previous attempts at using these visual speech signals to improve automatic speech recognition systems have combined the acoustic and visual speech information at a symbolic level using heuristic rules. In this paper, we demonstrate an alternative approach to fusing the visual and acoustic speech information by training feedforward neural networks to map the visual signal onto the corresponding short-term spectral amplitude envelope (STSAE) of the acoustic signal. This information can be directly combined with the degraded acoustic STSAE. Significant improvements are demonstrated in vowel recognition from noise-degraded acoustic signals. These results are compared to the performance of humans, as well as other pattern matching and estimation algorithms. 1 INTRODUCTION


Neural Networks: The Early Days

Neural Information Processing Systems

A short account is given of various investigations of neural network properties, beginning with the classic work of McCulloch & Pitts. Early work on neurodynamics and statistical mechanics, analogies with magnetic materials, fault tolerance via parallel distributed processing, memory, learning, and pattern recognition, is described.


A Systematic Study of the Input/Output Properties of a 2 Compartment Model Neuron With Active Membranes

Neural Information Processing Systems

The input/output properties of a 2 compartment model neuron are systematically explored. Taken from the work of MacGregor (MacGregor, 1987), the model neuron compartments contain several active conductances, including a potassium conductance in the dendritic compartment driven by the accumulation of intradendritic calcium. Dynamics of the conductances and potentials are governed by a set of coupled first order differential equations which are integrated numerically. There are a set of 17 internal parameters to this model, specificying conductance rate constants, time constants, thresholds, etc. To study parameter sensitivity, a set of trials were run in which the input driving the neuron is kept fixed while each internal parameter is varied with all others left fixed. To study the input/output relation, the input to the dendrite (a square wave) was varied (in frequency and magnitude) while all internal parameters of the system were left flXed, and the resulting output firing rate and bursting rate was counted. The input/output relation of the model neuron studied turns out to be much more sensitive to modulation of certain dendritic potassium current parameters than to plasticity of synapse efficacy per se (the amount of current influx due to synapse activation). This would in turn suggest, as has been recently observed experimentally, that the potassium current may be as or more important a focus of neural plasticity than synaptic efficacy.