Goto

Collaborating Authors

 Technology


Calendar of Events

AI Magazine

(ICKEDS 2004). GECAD--Knowledge Engineering and ICINCO Secretariat Decision Support Research Group Escola Superior de Tecnologia de Setubal Rua Dr. Antonio Bernardino Almeida / Campus do IPS


AAAI News

AI Magazine

However, all eligible students The American Association for Artificial Technical Papers, Workshop Proposals, are encouraged to apply. Intelligence presents the 2004 Tutorial Forum Proposals, Student After the conference, an expense Spring Symposium Series, to be held Programs, Intelligent Systems report will be required to account for Monday through Wednesday, March Demonstrations, and other related the funds awarded.


The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic Interoperability of Metadata

AI Magazine

This article presents the methodology that has been successfully used over the past seven years by an interdisciplinary team to create the International Committee for Documentation of the International Council of Museums (CIDOC) CONCEPTUAL REFERENCE MODEL (CRM), a high-level ontology to enable information integration for cultural heritage data and their correlation with library and archive information. The CIDOC CRM is now in the process to become an International Organization for Standardization (ISO) standard. This article justifies in detail the methodology and design by functional requirements and gives examples of its contents. The CIDOC CRM analyzes the common conceptualizations behind data and metadata structures to support data transformation, mediation, and merging. It is argued that such ontologies are propertycentric, in contrast to terminological systems, and should be built with different methodologies. It is demonstrated that ontological and epistemological arguments are equally important for an effective design, in particular when dealing with knowledge from the past in any domain. It is assumed that the presented methodology and the upper level of the ontology are applicable in a far wider domain.


Potential-Based Shaping and Q-Value Initialization are Equivalent

Journal of Artificial Intelligence Research

Shaping has proven to be a powerful but precarious means of improving reinforcement learning performance. Ng, Harada, and Russell (1999) proposed the potential-based shaping algorithm for adding shaping rewards in a way that guarantees the learner will learn optimal behavior. In this note, we prove certain similarities between this shaping algorithm and the initialization step required for several reinforcement learning algorithms. More specifically, we prove that a reinforcement learner with initial Q-values based on the shaping algorithm's potential function make the same updates throughout learning as a learner receiving potential-based shaping rewards. We further prove that under a broad category of policies, the behavior of these two learners are indistinguishable. The comparison provides intuition on the theoretical properties of the shaping algorithm as well as a suggestion for a simpler method for capturing the algorithm's benefit. In addition, the equivalence raises previously unaddressed issues concerning the efficiency of learning with potential-based shaping.


Decision-Theoretic Bidding Based on Learned Density Models in Simultaneous, Interacting Auctions

Journal of Artificial Intelligence Research

Auctions are becoming an increasingly popular method for transacting business, especially over the Internet. This article presents a general approach to building autonomous bidding agents to bid in multiple simultaneous auctions for interacting goods. A core component of our approach learns a model of the empirical price dynamics based on past data and uses the model to analytically calculate, to the greatest extent possible, optimal bids. We introduce a new and general boosting-based algorithm for conditional density estimation problems of this kind, i.e., supervised learning problems in which the goal is to estimate the entire conditional distribution of the real-valued label. This approach is fully implemented as ATTac-2001, a top-scoring agent in the second Trading Agent Competition (TAC-01). We present experiments demonstrating the effectiveness of our boosting-based price predictor relative to several reasonable alternatives.


Representing and Aggregating Conflicting Beliefs

Journal of Artificial Intelligence Research

We consider the two-fold problem of representing collective beliefs and aggregating these beliefs. We propose a novel representation for collective beliefs that uses modular, transitive relations over possible worlds. They allow us to represent conflicting opinions and they have a clear semantics, thus improving upon the quasi-transitive relations often used in social choice. We then describe a way to construct the belief state of an agent informed by a set of sources of varying degrees of reliability. This construction circumvents Arrow's Impossibility Theorem in a satisfactory manner by accounting for the explicitly encoded conflicts. We give a simple set-theory-based operator for combining the information of multiple agents. We show that this operator satisfies the desirable invariants of idempotence, commutativity, and associativity, and, thus, is well-behaved when iterated, and we describe a computationally effective way of computing the resulting belief state. Finally, we extend our framework to incorporate voting.


Ensembles of Protein Molecules as Statistical Analog Computers

arXiv.org Artificial Intelligence

A class of analog computers built from large numbers of microscopic probabilistic machines is discussed. It is postulated that such computers are implemented in biological systems as ensembles of protein molecules. The formalism is based on an abstract computational model referred to as Protein Molecule Machine (PMM). A PMM is a continuous-time first-order Markov system with real input and output vectors, a finite set of discrete states, and the input-dependent conditional probability densities of state transitions. The output of a PMM is a function of its input and state. The components of input vector, called generalized potentials, can be interpreted as membrane potential, and concentrations of neurotransmitters. The components of output vector, called generalized currents, can represent ion currents, and the flows of second messengers. An Ensemble of PMMs (EPMM) is a set of independent identical PMMs with the same input vector, and the output vector equal to the sum of output vectors of individual PMMs. The paper suggests that biological neurons have much more sophisticated computational resources than the presently popular models of artificial neurons.


Optimal Schedules for Parallelizing Anytime Algorithms: The Case of Shared Resources

Journal of Artificial Intelligence Research

The performance of anytime algorithms can be improved by simultaneously solving several instances of algorithm-problem pairs. These pairs may include different instances of a problem (such as starting from a different initial state), different algorithms (if several alternatives exist), or several runs of the same algorithm (for non-deterministic algorithms). In this paper we present a methodology for designing an optimal scheduling policy based on the statistical characteristics of the algorithms involved. We formally analyze the case where the processes share resources (a single-processor model), and provide an algorithm for optimal scheduling. We analyze, theoretically and empirically, the behavior of our scheduling algorithm for various distribution types.


Answer Set Planning Under Action Costs

Journal of Artificial Intelligence Research

Recently, planning based on answer set programming has been proposed as an approach towards realizing declarative planning systems. In this paper, we present the language Kc, which extends the declarative planning language K by action costs. Kc provides the notion of admissible and optimal plans, which are plans whose overall action costs are within a given limit resp. minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for expressing some nontrivial planning tasks in a declarative way. Furthermore, it can be utilized for representing planning problems under other optimality criteria, such as computing ``shortest'' plans (with the least number of steps), and refinement combinations of cheapest and fastest plans. We study complexity aspects of the language Kc and provide a transformation to logic programs, such that planning problems are solved via answer set programming. Furthermore, we report experimental results on selected problems. Our experience is encouraging that answer set planning may be a valuable approach to expressive planning systems in which intricate planning problems can be naturally specified and solved.


Bound Propagation

Journal of Artificial Intelligence Research

In this article we present an algorithm to compute bounds on the marginals of a graphical model. For several small clusters of nodes upper and lower bounds on the marginal values are computed independently of the rest of the network. The range of allowed probability distributions over the surrounding nodes is restricted using earlier computed bounds. As we will show, this can be considered as a set of constraints in a linear programming problem of which the objective function is the marginal probability of the center nodes. In this way knowledge about the maginals of neighbouring clusters is passed to other clusters thereby tightening the bounds on their marginals. We show that sharp bounds can be obtained for undirected and directed graphs that are used for practical applications, but for which exact computations are infeasible.