Goto

Collaborating Authors

 Technology


A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation

Neural Information Processing Systems

A non-parametric Bayesian model is proposed for processing multiple images. The analysis employs image features and, when present, the words associated with accompanying annotations. The model clusters the images into classes, and each image is segmented into a set of objects, also allowing the opportunity to assign a word to each object (localized labeling). Each object is assumed to be represented as a heterogeneous mix of components, with this realized via mixture models linking image features to object types. The number of image classes, number of object types, and the characteristics of the object-feature mixture models are inferred non-parametrically. To constitute spatially contiguous objects, a new logistic stick-breaking process is developed. Inference is performed efficiently via variational Bayesian analysis, with example results presented on two image databases.


Beyond Novelty Detection: Incongruent Events, when General and Specific Classifiers Disagree

Neural Information Processing Systems

Unexpected stimuli are a challenge to any machine learning algorithm. Here we identify distinct types of unexpected events, focusing on 'incongruent events' - when 'general level' and 'specific level' classifiers give conflicting predictions. We define a formal framework for the representation and processing of incongruent events: starting from the notion of label hierarchy, we show how partial order on labels can be deduced from such hierarchies. For each event, we compute its probability in different ways, based on adjacent levels (according to the partial order) in the label hierarchy . An incongruent event is an event where the probability computed based on some more specific level (in accordance with the partial order) is much smaller than the probability computed based on some more general level, leading to conflicting predictions. We derive algorithms to detect incongruent events from different types of hierarchies, corresponding to class membership or part membership. Respectively, we show promising results with real data on two specific problems: Out Of Vocabulary words in speech recognition, and the identification of a new sub-class (e.g., the face of a new individual) in audio-visual facial object recognition.


On Learning Rotations

Neural Information Processing Systems

An algorithm is presented for online learning of rotations. The proposed algorithm involves matrix exponentiated gradient updates and is motivated by the von Neumann divergence.The multiplicative updates are exponentiated skew-symmetric matrices which comprise the Lie algebra of the rotation group. The orthonormality andunit determinant of the matrix parameter are preserved using matrix logarithms andexponentials and the algorithm lends itself to intuitive interpretation in terms of the differential geometry of the manifold associated with the rotation group. A complexity reduction result is presented that exploits the eigenstructure of the matrix updates to simplify matrix exponentiation to a quadratic form.


Local Gaussian Process Regression for Real Time Online Model Learning

Neural Information Processing Systems

Learning in real-time applications, e.g., online approximation of the inverse dynamics model for model-based robot control, requires fast online regression techniques. Inspired by local learning, we propose a method to speed up standard Gaussian Process regression (GPR) with local GP models (LGP). The training data is partitioned in local regions, for each an individual GP model is trained. The prediction for a query point is performed by weighted estimation using nearby local models. Unlike other GP approximations, such as mixtures of experts, we use a distance based measure for partitioning of the data and weighted prediction. The proposed method achieves online learning and prediction in real-time. Comparisons with other nonparametric regression methods show that LGP has higher accuracy than LWPR and close to the performance of standard GPR and nu-SVR.


Natural Image Denoising with Convolutional Networks

Neural Information Processing Systems

We present an approach to low-level vision that combines two main ideas: the use of convolutional networks as an image processing architecture and an unsupervised learning procedure that synthesizes training samples from specific noise models. We demonstrate this approach on the challenging problem of natural image denoising. Using a test set with a hundred natural images, we find that convolutional networks provide comparable and in some cases superior performance to state of the art wavelet and Markov random field (MRF) methods. Moreover, we find that a convolutional network offers similar performance in the blind denoising setting as compared to other techniques in the non-blind setting. We also show how convolutional networks are mathematically related to MRF approaches by presenting a mean field theory for an MRF specially designed for image denoising. Although these approaches are related, convolutional networks avoid computational difficulties in MRF approaches that arise from probabilistic learning and inference. This makes it possible to learn image processing architectures that have a high degree of representational power (we train models with over 15,000 parameters), but whose computational expense is significantly less than that associated with inference in MRF approaches with even hundreds of parameters.



Manifold Regularization for SIR with Rate Root-n Convergence

Neural Information Processing Systems

In this paper, we study the manifold regularization for the Sliced Inverse Regression (SIR). The manifold regularization improves the standard SIR in two aspects: 1) it encodes the local geometry for SIR and 2) it enables SIR to deal with transductive and semi-supervised learning problems. We prove that the proposed graph Laplacian based regularization is convergent at rate root-n. The projection directions of the regularized SIR are optimized by using a conjugate gradient method on the Grassmann manifold. Experimental results support our theory.


Adaptive Regularization of Weight Vectors

Neural Information Processing Systems

We present AROW, a new online learning algorithm that combines several properties of successful : large margin training, confidence weighting, and the capacity to handle non-separable data. AROW performs adaptive regularization of the prediction function upon seeing each new instance, allowing it to perform especially well in the presence of label noise. We derive a mistake bound, similar in form to the second order perceptron bound, which does not assume separability. We also relate our algorithm to recent confidence-weighted online learning techniques and empirically show that AROW achieves state-of-the-art performance and notable robustness in the case of non-separable data.


fMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity

Neural Information Processing Systems

The inter-subject alignment of functional MRI (fMRI) data is important for improving the statistical power of fMRI group analyses. In contrast to existing anatomically-based methods, we propose a novel multi-subject algorithm that derives a functional correspondence by aligning spatial patterns of functional connectivity across a set of subjects. We test our method on fMRI data collected during a movie viewing experiment. By cross-validating the results of our algorithm, we show that the correspondence successfully generalizes to a secondary movie dataset not used to derive the alignment.


Abstraction and Relational learning

Neural Information Processing Systems

Most models of categorization learn categories defined by characteristic features but some categories are described more naturally in terms of relations. We present a generative model that helps to explain how relational categories are learned and used. Our model learns abstract schemata that specify the relational similarities shared by instances of a category, and our emphasis on abstraction departs from previous theoretical proposals that focus instead on comparison of concrete instances. Ourfirst experiment suggests that abstraction can help to explain some of the findings that have previously been used to support comparison-based approaches. Oursecond experiment focuses on one-shot schema learning, a problem that raises challenges for comparison-based approaches but is handled naturally by our abstraction-based account.