Optical Character Recognition
A Comparison of Dynamic Reposing and Tangent Distance for Drug Activity Prediction
Dietterich, Thomas G., Jain, Ajay N., Lathrop, Richard H., Lozano-Pรฉrez, Tomรกs
The task of drug activity prediction is to predict the activity of proposed drug compounds by learning from the observed activity of previously-synthesized drug compounds. Accurate drug activity prediction can save substantial time and money by focusing the efforts of chemists and biologists on the synthesis and testing of compounds whose predicted activity is high. If the requirements for highly active binding can be displayed in three dimensions, chemists can work from such displays to design new compounds having high predicted activity. Drug molecules usually act by binding to localized sites on large receptor molecules or large enyzme molecules. One reasonable way to represent drug molecules is to capture the location of their surface in the (fixed) frame of reference of the (hypothesized) binding site.
A Computational Model for Cursive Handwriting Based on the Minimization Principle
Wada, Yasuhiro, Koike, Yasuharu, Vatikiotis-Bateson, Eric, Kawato, Mitsuo
We propose a trajectory planning and control theory for continuous movements such as connected cursive handwriting and continuous natural speech. Its hardware is based on our previously proposed forward-inverse-relaxation neural network (Wada & Kawato, 1993). Computationally, its optimization principle is the minimum torquechange criterion. Regarding the representation level, hard constraints satisfied by a trajectory are represented as a set of via-points extracted from a handwritten character. Accordingly, we propose a via-point estimation algorithm that estimates via-points by repeating the trajectory formation of a character and the via-point extraction from the character. In experiments, good quantitative agreement is found between human handwriting data and the trajectories generated by the theory. Finally, we propose a recognition schema based on the movement generation. We show a result in which the recognition schema is applied to the handwritten character recognition and can be extended to the phoneme timing estimation of natural speech. 1 INTRODUCTION In reaching movements, trajectory formation is an ill-posed problem because the hand can move along an infinite number of possible trajectories from the starting to the target point.
Planar Hidden Markov Modeling: From Speech to Optical Character Recognition
Levin, Esther, Pieraccini, Roberto
We propose in this paper a statistical model (planar hidden Markov model - PHMM) describing statistical properties of images. The model generalizes the single-dimensional HMM, used for speech processing, to the planar case. For this model to be useful an efficient segmentation algorithm, similar to the Viterbi algorithm for HMM, must exist We present conditions in terms of the PHMM parameters that are sufficient to guarantee that the planar segmentation problem can be solved in polynomial time, and describe an algorithm for that. This algorithm aligns optimally the image with the model, and therefore is insensitive to elastic distortions of images. Using this algorithm a joint optima1 segmentation and recognition of the image can be performed, thus overcoming the weakness of traditional OCR systems where segmentation is performed independently before the recognition leading to unrecoverable recognition errors. Tbe PHMM approach was evaluated using a set of isolated band-written digits. An overall digit recognition accuracy of 95% was acbieved. An analysis of the results showed that even in the simple case of recognition of isolated characters, the elimination of elastic distortions enhances the performance Significantly. We expect that the advantage of this approach will be even more significant for tasks such as connected writing recognition/spotting, for whicb there is no known high accuracy method of recognition.
Planar Hidden Markov Modeling: From Speech to Optical Character Recognition
Levin, Esther, Pieraccini, Roberto
We propose in this paper a statistical model (planar hidden Markov model - PHMM) describing statistical properties of images. The model generalizes the single-dimensional HMM, used for speech processing, to the planar case. For this model to be useful an efficient segmentation algorithm, similar to the Viterbi algorithm for HMM, must exist We present conditions in terms of the PHMM parameters that are sufficient to guarantee that the planar segmentation problem can be solved in polynomial time, and describe an algorithm for that. This algorithm aligns optimally the image with the model, and therefore is insensitive to elastic distortions of images. Using this algorithm a joint optima1 segmentation and recognition of the image can be performed, thus overcoming the weakness of traditional OCR systems where segmentation is performed independently before the recognition leading to unrecoverable recognition errors. Tbe PHMM approach was evaluated using a set of isolated band-written digits. An overall digit recognition accuracy of 95% was acbieved. An analysis of the results showed that even in the simple case of recognition of isolated characters, the elimination of elastic distortions enhances the performance Significantly. We expect that the advantage of this approach will be even more significant for tasks such as connected writing recognition/spotting, for whicb there is no known high accuracy method of recognition.