Speech Synthesis
This new text-to-speech AI model understands what it's saying - how to try it for free
Text-to-speech AI models are a great tool for instances where human voice actors are typically used, such as audiobooks, dubbing, commercials, and more. However, because these models are not human and unaware of what they say, they can sometimes sound noticeably robotic. Hume's new AI model seeks to tackle this issue. On Wednesday, Hume launched Octave, a text-to-speech large language model (LLM) with contextual awareness. The LLM can use this awareness to adjust its tune, rhythm, and timbre of speech to the words it is reading based on their meaning, according to the company.
FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching
Wang, Hui, Liu, Shujie, Meng, Lingwei, Li, Jinyu, Yang, Yifan, Zhao, Shiwan, Sun, Haiyang, Liu, Yanqing, Sun, Haoqin, Zhou, Jiaming, Lu, Yan, Qin, Yong
To advance continuous-valued token modeling and temporal-coherence enforcement, we propose FELLE, an autoregressive model that integrates language modeling with token-wise flow matching. By leveraging the autoregressive nature of language models and the generative efficacy of flow matching, FELLE effectively predicts continuous-valued tokens (mel-spectrograms). For each continuous-valued token, FELLE modifies the general prior distribution in flow matching by incorporating information from the previous step, improving coherence and stability. Furthermore, to enhance synthesis quality, FELLE introduces a coarse-to-fine flow-matching mechanism, generating continuous-valued tokens hierarchically, conditioned on the language model's output. Experimental results demonstrate the potential of incorporating flow-matching techniques in autoregressive mel-spectrogram modeling, leading to significant improvements in TTS generation quality, as shown in https://aka.ms/felle.
LoRP-TTS: Low-Rank Personalized Text-To-Speech
Bondaruk, ลukasz, Kubiak, Jakub
Speech synthesis models convert written text into natural-sounding audio. While earlier models were limited to a single speaker, recent advancements have led to the development of zero-shot systems that generate realistic speech from a wide range of speakers using their voices as additional prompts. However, they still struggle with imitating non-studio-quality samples that differ significantly from the training datasets. In this work, we demonstrate that utilizing Low-Rank Adaptation (LoRA) allows us to successfully use even single recordings of spontaneous speech in noisy environments as prompts. This approach enhances speaker similarity by up to $30pp$ while preserving content and naturalness. It represents a significant step toward creating truly diverse speech corpora, that is crucial in all speech-related tasks.
BnTTS: Few-Shot Speaker Adaptation in Low-Resource Setting
Basher, Mohammad Jahid Ibna, Kowsher, Md, Islam, Md Saiful, Nandi, Rabindra Nath, Prottasha, Nusrat Jahan, Menon, Mehadi Hasan, Muntasir, Tareq Al, Chowdhury, Shammur Absar, Alam, Firoj, Yousefi, Niloofar, Garibay, Ozlem Ozmen
This paper introduces BnTTS (Bangla Text-To-Speech), the first framework for Bangla speaker adaptation-based TTS, designed to bridge the gap in Bangla speech synthesis using minimal training data. Building upon the XTTS architecture, our approach integrates Bangla into a multilingual TTS pipeline, with modifications to account for the phonetic and linguistic characteristics of the language. We pre-train BnTTS on 3.85k hours of Bangla speech dataset with corresponding text labels and evaluate performance in both zero-shot and few-shot settings on our proposed test dataset. Empirical evaluations in few-shot settings show that BnTTS significantly improves the naturalness, intelligibility, and speaker fidelity of synthesized Bangla speech. Compared to state-of-the-art Bangla TTS systems, BnTTS exhibits superior performance in Subjective Mean Opinion Score (SMOS), Naturalness, and Clarity metrics.
Gender Bias in Instruction-Guided Speech Synthesis Models
Recent advancements in controllable expressive speech synthesis, especially in text-to-speech (TTS) models, have allowed for the generation of speech with specific styles guided by textual descriptions, known as style prompts. While this development enhances the flexibility and naturalness of synthesized speech, there remains a significant gap in understanding how these models handle vague or abstract style prompts. This study investigates the potential gender bias in how models interpret occupation-related prompts, specifically examining their responses to instructions like "Act like a nurse". We explore whether these models exhibit tendencies to amplify gender stereotypes when interpreting such prompts. Our experimental results reveal the model's tendency to exhibit gender bias for certain occupations. Moreover, models of different sizes show varying degrees of this bias across these occupations.
StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models
In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for endto-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs. The audio demos and source code are available at https://styletts2.github.io/.
PortaSpeech: Portable and High-Quality Generative Text-to-Speech
Non-autoregressive text-to-speech (NAR-TTS) models such as FastSpeech 2 [24] and Glow-TTS [8] can synthesize high-quality speech from the given text in parallel. After analyzing two kinds of generative NAR-TTS models (VAE and normalizing flow), we find that: VAE is good at capturing the long-range semantics features (e.g., prosody) even with small model size but suffers from blurry and unnatural results; and normalizing flow is good at reconstructing the frequency bin-wise details but performs poorly when the number of model parameters is limited. Inspired by these observations, to generate diverse speech with natural details and rich prosody using a lightweight architecture, we propose PortaSpeech, a portable and high-quality generative text-to-speech model. Specifically, 1) to model both the prosody and mel-spectrogram details accurately, we adopt a lightweight VAE with an enhanced prior followed by a flow-based post-net with strong conditional inputs as the main architecture.
Developing multilingual speech synthesis system for Ojibwe, Mi'kmaq, and Maliseet
Wang, Shenran, Yang, Changbing, Parkhill, Mike, Quinn, Chad, Hammerly, Christopher, Zhu, Jian
We present lightweight flow matching multilingual text-to-speech (TTS) systems for Ojibwe, Mi'kmaq, and Maliseet, three Indigenous languages in North America. Our results show that training a multilingual TTS model on three typologically similar languages can improve the performance over monolingual models, especially when data are scarce. Attention-free architectures are highly competitive with self-attention architecture with higher memory efficiency. Our research not only advances technical development for the revitalization of low-resource languages but also highlights the cultural gap in human evaluation protocols, calling for a more community-centered approach to human evaluation.
Dict-TTS: Learning to Pronounce with Prior Dictionary Knowledge for Text-to-Speech
Polyphone disambiguation aims to capture accurate pronunciation knowledge from natural text sequences for reliable Text-to-speech (TTS) systems. However, previous approaches require substantial annotated training data and additional efforts from language experts, making it difficult to extend high-quality neural TTS systems to out-of-domain daily conversations and countless languages worldwide. This paper tackles the polyphone disambiguation problem from a concise and novel perspective: we propose Dict-TTS, a semantic-aware generative text-to-speech model with an online website dictionary (the existing prior information in the natural language). Specifically, we design a semantics-to-pronunciation attention (S2PA) module to match the semantic patterns between the input text sequence and the prior semantics in the dictionary and obtain the corresponding pronunciations; The S2PA module can be easily trained with the end-to-end TTS model without any annotated phoneme labels. Experimental results in three languages show that our model outperforms several strong baseline models in terms of pronunciation accuracy and improves the prosody modeling of TTS systems. Further extensive analyses demonstrate that each design in Dict-TTS is effective.
GenerSpeech: Towards Style Transfer for Generalizable Out-Of-Domain Text-to-Speech
Style transfer for out-of-domain (OOD) speech synthesis aims to generate speech samples with unseen style (e.g., speaker identity, emotion, and prosody) derived from an acoustic reference, while facing the following challenges: 1) The highly dynamic style features in expressive voice are difficult to model and transfer; and 2) the TTS models should be robust enough to handle diverse OOD conditions that differ from the source data. This paper proposes GenerSpeech, a text-tospeech model towards high-fidelity zero-shot style transfer of OOD custom voice. GenerSpeech decomposes the speech variation into the style-agnostic and stylespecific parts by introducing two components: 1) a multi-level style adaptor to efficiently model a large range of style conditions, including global speaker and emotion characteristics, and the local (utterance, phoneme, and word-level) finegrained prosodic representations; and 2) a generalizable content adaptor with Mix-Style Layer Normalization to eliminate style information in the linguistic content representation and thus improve model generalization. Our evaluations on zero-shot style transfer demonstrate that GenerSpeech surpasses the state-of-the-art models in terms of audio quality and style similarity. The extension studies to adaptive style transfer further show that GenerSpeech performs robustly in the few-shot data setting.