Collaborating Authors

Bayesian Inference

Active Tree Search in Large POMDPs Artificial Intelligence

Model-based planning and prospection are widely studied in both cognitive neuroscience and artificial intelligence (AI), but from different perspectives - and with different desiderata in mind (biological realism versus scalability) that are difficult to reconcile. Here, we introduce a novel method to plan in large POMDPs - Active Tree Search - that combines the normative character and biological realism of a leading planning theory in neuroscience (Active Inference) and the scalability of Monte-Carlo methods in AI. This unification is beneficial for both approaches. On the one hand, using Monte-Carlo planning permits scaling up the biologically grounded approach of Active Inference to large-scale problems. On the other hand, the theory of Active Inference provides a principled solution to the balance of exploration and exploitation, which is often addressed heuristically in Monte-Carlo methods. Our simulations show that Active Tree Search successfully navigates binary trees that are challenging for sampling-based methods, problems that require adaptive exploration, and the large POMDP problem Rocksample. Furthermore, we illustrate how Active Tree Search can be used to simulate neurophysiological responses (e.g., in the hippocampus and prefrontal cortex) of humans and other animals that contain large planning problems. These simulations show that Active Tree Search is a principled realisation of neuroscientific and AI theories of planning, which offers both biological realism and scalability.

Solving Inverse Problems by Joint Posterior Maximization with Autoencoding Prior Machine Learning

In this work we address the problem of solving ill-posed inverse problems in imaging where the prior is a variational autoencoder (VAE). Specifically we consider the decoupled case where the prior is trained once and can be reused for many different log-concave degradation models without retraining. Whereas previous MAP-based approaches to this problem lead to highly non-convex optimization algorithms, our approach computes the joint (space-latent) MAP that naturally leads to alternate optimization algorithms and to the use of a stochastic encoder to accelerate computations. The resulting technique (JPMAP) performs Joint Posterior Maximization using an Autoencoding Prior. We show theoretical and experimental evidence that the proposed objective function is quite close to bi-convex. Indeed it satisfies a weak bi-convexity property which is sufficient to guarantee that our optimization scheme converges to a stationary point. We also highlight the importance of correctly training the VAE using a denoising criterion, in order to ensure that the encoder generalizes well to out-of-distribution images, without affecting the quality of the generative model. This simple modification is key to providing robustness to the whole procedure. Finally we show how our joint MAP methodology relates to more common MAP approaches, and we propose a continuation scheme that makes use of our JPMAP algorithm to provide more robust MAP estimates. Experimental results also show the higher quality of the solutions obtained by our JPMAP approach with respect to other non-convex MAP approaches which more often get stuck in spurious local optima.

Markov Modeling of Time-Series Data using Symbolic Analysis Machine Learning

Markov models are often used to capture the temporal patterns of sequential data for statistical learning applications. While the Hidden Markov modeling-based learning mechanisms are well studied in literature, we analyze a symbolic-dynamics inspired approach. Under this umbrella, Markov modeling of time-series data consists of two major steps -- discretization of continuous attributes followed by estimating the size of temporal memory of the discretized sequence. These two steps are critical for the accurate and concise representation of time-series data in the discrete space. Discretization governs the information content of the resultant discretized sequence. On the other hand, memory estimation of the symbolic sequence helps to extract the predictive patterns in the discretized data. Clearly, the effectiveness of signal representation as a discrete Markov process depends on both these steps. In this paper, we will review the different techniques for discretization and memory estimation for discrete stochastic processes. In particular, we will focus on the individual problems of discretization and order estimation for discrete stochastic process. We will present some results from literature on partitioning from dynamical systems theory and order estimation using concepts of information theory and statistical learning. The paper also presents some related problem formulations which will be useful for machine learning and statistical learning application using the symbolic framework of data analysis. We present some results of statistical analysis of a complex thermoacoustic instability phenomenon during lean-premixed combustion in jet-turbine engines using the proposed Markov modeling method.

The Efficient Shrinkage Path: Maximum Likelihood of Minimum MSE Risk Machine Learning

When linear models are fit to ill-conditioned or confounded narrow-data, TRACE plots are useful in demonstrating and justifying deliberately biased estimation. This makes TRACE diagnostics powerful "visual" displays. If advanced students of regression are trained in interpretation of Trace plots, they could help admininstrators capable of basic statistical thinking avoid misinterpretations of questionable regression coefficient estimates. All five types of ridge TRACE plots for a wide variety of ridge paths can be explored using R-functions. For example, the RXshrink aug.lars() function generates TRACE s for Least-Angle, Lasso and Forward Stagewise methods (Efron, Hastie, Johnstone and Tibshirani 2004; Hastie and

Solving and Learning Nonlinear PDEs with Gaussian Processes Machine Learning

We introduce a simple, rigorous, and unified framework for solving nonlinear partial differential equations (PDEs), and for solving inverse problems (IPs) involving the identification of parameters in PDEs, using the framework of Gaussian processes. The proposed approach (1) provides a natural generalization of collocation kernel methods to nonlinear PDEs and IPs, (2) has guaranteed convergence with a path to compute error bounds in the PDE setting, and (3) inherits the state-of-the-art computational complexity of linear solvers for dense kernel matrices. The main idea of our method is to approximate the solution of a given PDE with a MAP estimator of a Gaussian process given the observation of the PDE at a finite number of collocation points. Although this optimization problem is infinite-dimensional, it can be reduced to a finite-dimensional one by introducing additional variables corresponding to the values of the derivatives of the solution at collocation points; this generalizes the representer theorem arising in Gaussian process regression. The reduced optimization problem has a quadratic loss and nonlinear constraints, and it is in turn solved with a variant of the Gauss-Newton method. The resulting algorithm (a) can be interpreted as solving successive linearizations of the nonlinear PDE, and (b) is found in practice to converge in a small number (two to ten) of iterations in experiments conducted on a range of PDEs. For IPs, while the traditional approach has been to iterate between the identifications of parameters in the PDE and the numerical approximation of its solution, our algorithm tackles both simultaneously. Experiments on nonlinear elliptic PDEs, Burgers' equation, a regularized Eikonal equation, and an IP for permeability identification in Darcy flow illustrate the efficacy and scope of our framework.

Numerical comparisons between Bayesian and frequentist low-rank matrix completion: estimation accuracy and uncertainty quantification Machine Learning

In this paper we perform a numerious numerical studies for the problem of low-rank matrix completion. We compare the Bayesain approaches and a recently introduced de-biased estimator which provides a useful way to build confidence intervals of interest. From a theoretical viewpoint, the de-biased estimator comes with a sharp minimax-optinmal rate of estimation error whereas the Bayesian approach reaches this rate with an additional logarithmic factor. Our simulation studies show originally interesting results that the de-biased estimator is just as good as the Bayesain estimators. Moreover, Bayesian approaches are much more stable and can outperform the de-biased estimator in the case of small samples. However, we also find that the length of the confidence intervals revealed by the de-biased estimator for an entry is absolutely shorter than the length of the considered credible interval. These suggest further theoretical studies on the estimation error and the concentration for Bayesian methods as they are being quite limited up to present.

Uncertainty Estimation in SARS-CoV-2 B-cell Epitope Prediction for Vaccine Development Artificial Intelligence

B-cell epitopes play a key role in stimulating B-cells, triggering the primary immune response which results in antibody production as well as the establishment of long-term immunity in the form of memory cells. Consequently, being able to accurately predict appropriate linear B-cell epitope regions would pave the way for the development of new protein-based vaccines. Knowing how much confidence there is in a prediction is also essential for gaining clinicians' trust in the technology. In this article, we propose a calibrated uncertainty estimation in deep learning to approximate variational Bayesian inference using MC-DropWeights to predict epitope regions using the data from the immune epitope database. Having applied this onto SARS-CoV-2, it can more reliably predict B-cell epitopes than standard methods. This will be able to identify safe and effective vaccine candidates against Covid-19.

Bayesian imaging using Plug & Play priors: when Langevin meets Tweedie Machine Learning

Since the seminal work of Venkatakrishnan et al. (2013), Plug & Play (PnP) methods have become ubiquitous in Bayesian imaging. These methods derive Minimum Mean Square Error (MMSE) or Maximum A Posteriori (MAP) estimators for inverse problems in imaging by combining an explicit likelihood function with a prior that is implicitly defined by an image denoising algorithm. The PnP algorithms proposed in the literature mainly differ in the iterative schemes they use for optimisation or for sampling. In the case of optimisation schemes, some recent works guarantee the convergence to a fixed point, albeit not necessarily a MAP estimate. In the case of sampling schemes, to the best of our knowledge, there is no known proof of convergence. There also remain important open questions regarding whether the underlying Bayesian models and estimators are well defined, well-posed, and have the basic regularity properties required to support these numerical schemes. To address these limitations, this paper develops theory, methods, and provably convergent algorithms for performing Bayesian inference with PnP priors. We introduce two algorithms: 1) PnP-ULA (Unadjusted Langevin Algorithm) for Monte Carlo sampling and MMSE inference; and 2) PnP-SGD (Stochastic Gradient Descent) for MAP inference. Using recent results on the quantitative convergence of Markov chains, we establish detailed convergence guarantees for these two algorithms under realistic assumptions on the denoising operators used, with special attention to denoisers based on deep neural networks. We also show that these algorithms approximately target a decision-theoretically optimal Bayesian model that is well-posed. The proposed algorithms are demonstrated on several canonical problems such as image deblurring, inpainting, and denoising, where they are used for point estimation as well as for uncertainty visualisation and quantification.

Inductive Inference in Supervised Classification Machine Learning

Inductive inference in supervised classification context constitutes to methods and approaches to assign some objects or items into different predefined classes using a formal rule that is derived from training data and possibly some additional auxiliary information. The optimality of such an assignment varies under different conditions due to intrinsic attributes of the objects being considered for such a task. One of these cases is when all the objects' features are discrete variables with a priori known categories. As another example, one can consider a modification of this case with a priori unknown categories. These two cases are the main focus of this thesis and based on Bayesian inductive theories, de Finetti type exchangeability is a suitable assumption that facilitates the derivation of classifiers in the former scenario. On the contrary, this type of exchangeability is not applicable in the latter case, instead, it is possible to utilise the partition exchangeability due to John Kingman. These two types of exchangeabilities are discussed and furthermore here I investigate inductive supervised classifiers based on both types of exchangeabilities. I further demonstrate that the classifiers based on de Finetti type exchangeability can optimally handle test items independently of each other in the presence of infinite amounts of training data while on the other hand, classifiers based on partition exchangeability still continue to benefit from joint labelling of all the test items. Additionally, it is shown that the inductive learning process for the simultaneous classifier saturates when the amount of test data tends to infinity.

A Probabilistic State Space Model for Joint Inference from Differential Equations and Data Machine Learning

Mechanistic models with differential equations are a key component of scientific applications of machine learning. Inference in such models is usually computationally demanding, because it involves repeatedly solving the differential equation. The main problem here is that the numerical solver is hard to combine with standard inference techniques. Recent work in probabilistic numerics has developed a new class of solvers for ordinary differential equations (ODEs) that phrase the solution process directly in terms of Bayesian filtering. We here show that this allows such methods to be combined very directly, with conceptual and numerical ease, with latent force models in the ODE itself. It then becomes possible to perform approximate Bayesian inference on the latent force as well as the ODE solution in a single, linear complexity pass of an extended Kalman filter / smoother - that is, at the cost of computing a single ODE solution. We demonstrate the expressiveness and performance of the algorithm by training a non-parametric SIRD model on data from the COVID-19 outbreak.