Goto

Collaborating Authors

 Temporal Reasoning


Pre-trained Language Model with Prompts for Temporal Knowledge Graph Completion

arXiv.org Artificial Intelligence

Temporal Knowledge graph completion (TKGC) is a crucial task that involves reasoning at known timestamps to complete the missing part of facts and has attracted more and more attention in recent years. Most existing methods focus on learning representations based on graph neural networks while inaccurately extracting information from timestamps and insufficiently utilizing the implied information in relations. To address these problems, we propose a novel TKGC model, namely Pre-trained Language Model with Prompts for TKGC (PPT). We convert a series of sampled quadruples into pre-trained language model inputs and convert intervals between timestamps into different prompts to make coherent sentences with implicit semantic information. We train our model with a masking strategy to convert TKGC task into a masked token prediction task, which can leverage the semantic information in pre-trained language models. Experiments on three benchmark datasets and extensive analysis demonstrate that our model has great competitiveness compared to other models with four metrics. Our model can effectively incorporate information from temporal knowledge graphs into the language models.


ECOLA: Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations

arXiv.org Artificial Intelligence

Since conventional knowledge embedding models cannot take full advantage of the abundant textual information, there have been extensive research efforts in enhancing knowledge embedding using texts. However, existing enhancement approaches cannot apply to temporal knowledge graphs (tKGs), which contain time-dependent event knowledge with complex temporal dynamics. Specifically, existing enhancement approaches often assume knowledge embedding is time-independent. In contrast, the entity embedding in tKG models usually evolves, which poses the challenge of aligning temporally relevant texts with entities. To this end, we propose to study enhancing temporal knowledge embedding with textual data in this paper. As an approach to this task, we propose Enhanced Temporal Knowledge Embeddings with Contextualized Language Representations (ECOLA), which takes the temporal aspect into account and injects textual information into temporal knowledge embedding. To evaluate ECOLA, we introduce three new datasets for training and evaluating ECOLA. Extensive experiments show that ECOLA significantly enhances temporal KG embedding models with up to 287% relative improvements regarding Hits@1 on the link prediction task. The code and models are publicly available on https://anonymous.4open.science/r/ECOLA.


Adaptive Path-Memory Network for Temporal Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Temporal knowledge graph (TKG) reasoning aims to predict the future missing facts based on historical information and has gained increasing research interest recently. Lots of works have been made to model the historical structural and temporal characteristics for the reasoning task. Most existing works model the graph structure mainly depending on entity representation. However, the magnitude of TKG entities in real-world scenarios is considerable, and an increasing number of new entities will arise as time goes on. Therefore, we propose a novel architecture modeling with relation feature of TKG, namely aDAptivE path-MemOry Network (DaeMon), which adaptively models the temporal path information between query subject and each object candidate across history time. It models the historical information without depending on entity representation. Specifically, DaeMon uses path memory to record the temporal path information derived from path aggregation unit across timeline considering the memory passing strategy between adjacent timestamps. Extensive experiments conducted on four real-world TKG datasets demonstrate that our proposed model obtains substantial performance improvement and outperforms the state-of-the-art up to 4.8% absolute in MRR.


Incorporating Structured Sentences with Time-enhanced BERT for Fully-inductive Temporal Relation Prediction

arXiv.org Artificial Intelligence

Temporal relation prediction in incomplete temporal knowledge graphs (TKGs) is a popular temporal knowledge graph completion (TKGC) problem in both transductive and inductive settings. Traditional embedding-based TKGC models (TKGE) rely on structured connections and can only handle a fixed set of entities, i.e., the transductive setting. In the inductive setting where test TKGs contain emerging entities, the latest methods are based on symbolic rules or pre-trained language models (PLMs). However, they suffer from being inflexible and not time-specific, respectively. In this work, we extend the fully-inductive setting, where entities in the training and test sets are totally disjoint, into TKGs and take a further step towards a more flexible and time-sensitive temporal relation prediction approach SST-BERT, incorporating Structured Sentences with Time-enhanced BERT. Our model can obtain the entity history and implicitly learn rules in the semantic space by encoding structured sentences, solving the problem of inflexibility. We propose to use a time masking MLM task to pre-train BERT in a corpus rich in temporal tokens specially generated for TKGs, enhancing the time sensitivity of SST-BERT. To compute the probability of occurrence of a target quadruple, we aggregate all its structured sentences from both temporal and semantic perspectives into a score. Experiments on the transductive datasets and newly generated fully-inductive benchmarks show that SST-BERT successfully improves over state-of-the-art baselines.


DREAM: Adaptive Reinforcement Learning based on Attention Mechanism for Temporal Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Temporal knowledge graphs (TKGs) model the temporal evolution of events and have recently attracted increasing attention. Since TKGs are intrinsically incomplete, it is necessary to reason out missing elements. Although existing TKG reasoning methods have the ability to predict missing future events, they fail to generate explicit reasoning paths and lack explainability. As reinforcement learning (RL) for multi-hop reasoning on traditional knowledge graphs starts showing superior explainability and performance in recent advances, it has opened up opportunities for exploring RL techniques on TKG reasoning. However, the performance of RL-based TKG reasoning methods is limited due to: (1) lack of ability to capture temporal evolution and semantic dependence jointly; (2) excessive reliance on manually designed rewards. To overcome these challenges, we propose an adaptive reinforcement learning model based on attention mechanism (DREAM) to predict missing elements in the future. Specifically, the model contains two components: (1) a multi-faceted attention representation learning method that captures semantic dependence and temporal evolution jointly; (2) an adaptive RL framework that conducts multi-hop reasoning by adaptively learning the reward functions. Experimental results demonstrate DREAM outperforms state-of-the-art models on public dataset


Mutually-paced Knowledge Distillation for Cross-lingual Temporal Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

This paper investigates cross-lingual temporal knowledge graph reasoning problem, which aims to facilitate reasoning on Temporal Knowledge Graphs (TKGs) in low-resource languages by transfering knowledge from TKGs in high-resource ones. The cross-lingual distillation ability across TKGs becomes increasingly crucial, in light of the unsatisfying performance of existing reasoning methods on those severely incomplete TKGs, especially in low-resource languages. However, it poses tremendous challenges in two aspects. First, the cross-lingual alignments, which serve as bridges for knowledge transfer, are usually too scarce to transfer sufficient knowledge between two TKGs. Second, temporal knowledge discrepancy of the aligned entities, especially when alignments are unreliable, can mislead the knowledge distillation process. We correspondingly propose a mutually-paced knowledge distillation model MP-KD, where a teacher network trained on a source TKG can guide the training of a student network on target TKGs with an alignment module. Concretely, to deal with the scarcity issue, MP-KD generates pseudo alignments between TKGs based on the temporal information extracted by our representation module. To maximize the efficacy of knowledge transfer and control the noise caused by the temporal knowledge discrepancy, we enhance MP-KD with a temporal cross-lingual attention mechanism to dynamically estimate the alignment strength. The two procedures are mutually paced along with model training. Extensive experiments on twelve cross-lingual TKG transfer tasks in the EventKG benchmark demonstrate the effectiveness of the proposed MP-KD method.


AZTR: Aerial Video Action Recognition with Auto Zoom and Temporal Reasoning

arXiv.org Artificial Intelligence

We propose a novel approach for aerial video action recognition. Our method is designed for videos captured using UAVs and can run on edge or mobile devices. We present a learning-based approach that uses customized auto zoom to automatically identify the human target and scale it appropriately. This makes it easier to extract the key features and reduces the computational overhead. We also present an efficient temporal reasoning algorithm to capture the action information along the spatial and temporal domains within a controllable computational cost. Our approach has been implemented and evaluated both on the desktop with high-end GPUs and on the low power Robotics RB5 Platform for robots and drones. In practice, we achieve 6.1-7.4% improvement over SOTA in Top-1 accuracy on the RoCoG-v2 dataset, 8.3-10.4% improvement on the UAV-Human dataset and 3.2% improvement on the Drone Action dataset.


Implicit Temporal Reasoning for Evidence-Based Fact-Checking

arXiv.org Artificial Intelligence

Leveraging contextual knowledge has become standard practice in automated claim verification, yet the impact of temporal reasoning has been largely overlooked. Our study demonstrates that time positively influences the claim verification process of evidence-based fact-checking. The temporal aspects and relations between claims and evidence are first established through grounding on shared timelines, which are constructed using publication dates and time expressions extracted from their text. Temporal information is then provided to RNN-based and Transformer-based classifiers before or after claim and evidence encoding. Our time-aware fact-checking models surpass base models by up to 9% Micro F1 (64.17%) and 15% Macro F1 (47.43%) on the MultiFC dataset. They also outperform prior methods that explicitly model temporal relations between evidence. Our findings show that the presence of temporal information and the manner in which timelines are constructed greatly influence how fact-checking models determine the relevance and supporting or refuting character of evidence documents.


More Data Types More Problems: A Temporal Analysis of Complexity, Stability, and Sensitivity in Privacy Policies

arXiv.org Artificial Intelligence

Collecting personally identifiable information (PII) on data subjects has become big business. Data brokers and data processors are part of a multi-billion-dollar industry that profits from collecting, buying, and selling consumer data. Yet there is little transparency in the data collection industry which makes it difficult to understand what types of data are being collected, used, and sold, and thus the risk to individual data subjects. In this study, we examine a large textual dataset of privacy policies from 1997-2019 in order to investigate the data collection activities of data brokers and data processors. We also develop an original lexicon of PII-related terms representing PII data types curated from legislative texts. This mesoscale analysis looks at privacy policies overtime on the word, topic, and network levels to understand the stability, complexity, and sensitivity of privacy policies over time. We find that (1) privacy legislation correlates with changes in stability and turbulence of PII data types in privacy policies; (2) the complexity of privacy policies decreases over time and becomes more regularized; (3) sensitivity rises over time and shows spikes that are correlated with events when new privacy legislation is introduced.


Meta-Learning Based Knowledge Extrapolation for Temporal Knowledge Graph

arXiv.org Artificial Intelligence

In the last few years, the solution to Knowledge Graph (KG) completion via learning embeddings of entities and relations has attracted a surge of interest. Temporal KGs(TKGs) extend traditional Knowledge Graphs (KGs) by associating static triples with timestamps forming quadruples. Different from KGs and TKGs in the transductive setting, constantly emerging entities and relations in incomplete TKGs create demand to predict missing facts with unseen components, which is the extrapolation setting. Traditional temporal knowledge graph embedding (TKGE) methods are limited in the extrapolation setting since they are trained within a fixed set of components. In this paper, we propose a Meta-Learning based Temporal Knowledge Graph Extrapolation (MTKGE) model, which is trained on link prediction tasks sampled from the existing TKGs and tested in the emerging TKGs with unseen entities and relations. Specifically, we meta-train a GNN framework that captures relative position patterns and temporal sequence patterns between relations. The learned embeddings of patterns can be transferred to embed unseen components. Experimental results on two different TKG extrapolation datasets show that MTKGE consistently outperforms both the existing state-of-the-art models for knowledge graph extrapolation and specifically adapted KGE and TKGE baselines.