Goto

Collaborating Authors

 Temporal Reasoning


ForecastTKGQuestions: A Benchmark for Temporal Question Answering and Forecasting over Temporal Knowledge Graphs

arXiv.org Artificial Intelligence

Question answering over temporal knowledge graphs (TKGQA) has recently found increasing interest. TKGQA requires temporal reasoning techniques to extract the relevant information from temporal knowledge bases. The only existing TKGQA dataset, i.e., CronQuestions, consists of temporal questions based on the facts from a fixed time period, where a temporal knowledge graph (TKG) spanning the same period can be fully used for answer inference, allowing the TKGQA models to use even the future knowledge to answer the questions based on the past facts. In real-world scenarios, however, it is also common that given the knowledge until now, we wish the TKGQA systems to answer the questions asking about the future. As humans constantly seek plans for the future, building TKGQA systems for answering such forecasting questions is important. Nevertheless, this has still been unexplored in previous research. In this paper, we propose a novel task: forecasting question answering over temporal knowledge graphs. We also propose a large-scale TKGQA benchmark dataset, i.e., ForecastTKGQuestions, for this task. It includes three types of questions, i.e., entity prediction, yes-no, and fact reasoning questions. For every forecasting question in our dataset, QA models can only have access to the TKG information before the timestamp annotated in the given question for answer inference. We find that the state-of-the-art TKGQA methods perform poorly on forecasting questions, and they are unable to answer yes-no questions and fact reasoning questions. To this end, we propose ForecastTKGQA, a TKGQA model that employs a TKG forecasting module for future inference, to answer all three types of questions. Experimental results show that ForecastTKGQA outperforms recent TKGQA methods on the entity prediction questions, and it also shows great effectiveness in answering the other two types of questions.


Custom DNN using Reward Modulated Inverted STDP Learning for Temporal Pattern Recognition

arXiv.org Artificial Intelligence

Temporal spike recognition plays a crucial role in various domains, including anomaly detection, keyword spotting and neuroscience. This paper presents a novel algorithm for efficient temporal spike pattern recognition on sparse event series data. The algorithm leverages a combination of reward-modulatory behavior, Hebbian and anti-Hebbian based learning methods to identify patterns in dynamic datasets with short intervals of training. The algorithm begins with a preprocessing step, where the input data is rationalized and translated to a feature-rich yet sparse spike time series data. Next, a linear feed forward spiking neural network processes this data to identify a trained pattern. Finally, the next layer performs a weighted check to ensure the correct pattern has been detected.To evaluate the performance of the proposed algorithm, it was trained on a complex dataset containing spoken digits with spike information and its output compared to state-of-the-art.


Exploring Link Prediction over Hyper-Relational Temporal Knowledge Graphs Enhanced with Time-Invariant Relational Knowledge

arXiv.org Artificial Intelligence

Stemming from traditional knowledge graphs (KGs), hyper-relational KGs (HKGs) provide additional key-value pairs (i.e., qualifiers) for each KG fact that help to better restrict the fact validity. In recent years, there has been an increasing interest in studying graph reasoning over HKGs. In the meantime, due to the ever-evolving nature of world knowledge, extensive parallel works have been focusing on reasoning over temporal KGs (TKGs), where each TKG fact can be viewed as a KG fact coupled with a timestamp (or time period) specifying its time validity. The existing HKG reasoning approaches do not consider temporal information because it is not explicitly specified in previous benchmark datasets. Besides, all the previous TKG reasoning methods only lay emphasis on temporal reasoning and have no way to learn from qualifiers. To this end, we aim to fill the gap between TKG reasoning and HKG reasoning. We develop two new benchmark hyper-relational TKG (HTKG) datasets, i.e., Wiki-hy and YAGO-hy, and propose a HTKG reasoning model that efficiently models both temporal facts and qualifiers. We further exploit additional time-invariant relational knowledge from the Wikidata knowledge base and study its effectiveness in HTKG reasoning. Time-invariant relational knowledge serves as the knowledge that remains unchanged in time (e.g., Sasha Obama is the child of Barack Obama), and it has never been fully explored in previous TKG reasoning benchmarks and approaches. Experimental results show that our model substantially outperforms previous related methods on HTKG link prediction and can be enhanced by jointly leveraging both temporal and time-invariant relational knowledge.


Towards Benchmarking and Improving the Temporal Reasoning Capability of Large Language Models

arXiv.org Artificial Intelligence

Reasoning about time is of fundamental importance. Many facts are time-dependent. For example, athletes change teams from time to time, and different government officials are elected periodically. Previous time-dependent question answering (QA) datasets tend to be biased in either their coverage of time spans or question types. In this paper, we introduce a comprehensive probing dataset \tempreason to evaluate the temporal reasoning capability of large language models. Our dataset includes questions of three temporal reasoning levels. In addition, we also propose a novel learning framework to improve the temporal reasoning capability of large language models, based on temporal span extraction and time-sensitive reinforcement learning. We conducted experiments in closed book QA, open book QA, and reasoning QA settings and demonstrated the effectiveness of our approach. Our code and data are released on https://github.com/DAMO-NLP-SG/TempReason.


Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs using Confidence-Augmented Reinforcement Learning

arXiv.org Artificial Intelligence

Temporal knowledge graph completion (TKGC) aims to predict the missing links among the entities in a temporal knwoledge graph (TKG). Most previous TKGC methods only consider predicting the missing links among the entities seen in the training set, while they are unable to achieve great performance in link prediction concerning newly-emerged unseen entities. Recently, a new task, i.e., TKG few-shot out-of-graph (OOG) link prediction, is proposed, where TKGC models are required to achieve great link prediction performance concerning newly-emerged entities that only have few-shot observed examples. In this work, we propose a TKGC method FITCARL that combines few-shot learning with reinforcement learning to solve this task. In FITCARL, an agent traverses through the whole TKG to search for the prediction answer. A policy network is designed to guide the search process based on the traversed path. To better address the data scarcity problem in the few-shot setting, we introduce a module that computes the confidence of each candidate action and integrate it into the policy for action selection. We also exploit the entity concept information with a novel concept regularizer to boost model performance. Experimental results show that FITCARL achieves stat-of-the-art performance on TKG few-shot OOG link prediction.


Generic Temporal Reasoning with Differential Analysis and Explanation

arXiv.org Artificial Intelligence

Temporal reasoning is the task of predicting temporal relations of event pairs. While temporal reasoning models can perform reasonably well on in-domain benchmarks, we have little idea of these systems' generalizability due to existing datasets' limitations. In this work, we introduce a novel task named TODAY that bridges this gap with temporal differential analysis, which as the name suggests, evaluates whether systems can correctly understand the effect of incremental changes. Specifically, TODAY introduces slight contextual changes for given event pairs, and systems are asked to tell how this subtle contextual change would affect relevant temporal relation distributions. To facilitate learning, TODAY also annotates human explanations. We show that existing models, including GPT-3.5, drop to random guessing on TODAY, suggesting that they heavily rely on spurious information rather than proper reasoning for temporal predictions. On the other hand, we show that TODAY's supervision style and explanation annotations can be used in joint learning, encouraging models to use more appropriate signals during training and thus outperform across several benchmarks. TODAY can also be used to train models to solicit incidental supervision from noisy sources such as GPT-3.5, thus moving us more toward the goal of generic temporal reasoning systems.


History Repeats: Overcoming Catastrophic Forgetting For Event-Centric Temporal Knowledge Graph Completion

arXiv.org Artificial Intelligence

Temporal knowledge graph (TKG) completion models typically rely on having access to the entire graph during training. However, in real-world scenarios, TKG data is often received incrementally as events unfold, leading to a dynamic non-stationary data distribution over time. While one could incorporate fine-tuning to existing methods to allow them to adapt to evolving TKG data, this can lead to forgetting previously learned patterns. Alternatively, retraining the model with the entire updated TKG can mitigate forgetting but is computationally burdensome. To address these challenges, we propose a general continual training framework that is applicable to any TKG completion method, and leverages two key ideas: (i) a temporal regularization that encourages repurposing of less important model parameters for learning new knowledge, and (ii) a clustering-based experience replay that reinforces the past knowledge by selectively preserving only a small portion of the past data. Our experimental results on widely used event-centric TKG datasets demonstrate the effectiveness of our proposed continual training framework in adapting to new events while reducing catastrophic forgetting. Further, we perform ablation studies to show the effectiveness of each component of our proposed framework. Finally, we investigate the relation between the memory dedicated to experience replay and the benefit gained from our clustering-based sampling strategy.


Getting Sick After Seeing a Doctor? Diagnosing and Mitigating Knowledge Conflicts in Event Temporal Reasoning

arXiv.org Artificial Intelligence

Event temporal reasoning aims at identifying the temporal relations between two or more events. However, knowledge conflicts arise when there is a mismatch between the actual temporal relations of events in the context and the prior knowledge or biases learned by the model. We first systematically define distinct kinds of bias in event temporal reasoning, which include event relation prior bias, tense bias, narrative bias, and dependency bias, as indicators to study knowledge conflicts. To mitigate such event-related knowledge conflict, we introduce a Counterfactual Data Augmentation based method that can be applied to both Pre-trained Language Models (PLMs) and Large Language Models (LLMs) either as additional training data or demonstrations for In-Context Learning. Experiments suggest the importance of mitigating knowledge conflicts in event temporal reasoning tasks for reducing hallucination and highlight the potential of counterfactual data augmentation for improving model performance.


Learning Meta Representations of One-shot Relations for Temporal Knowledge Graph Link Prediction

arXiv.org Artificial Intelligence

Few-shot relational learning for static knowledge graphs (KGs) has drawn greater interest in recent years, while few-shot learning for temporal knowledge graphs (TKGs) has hardly been studied. Compared to KGs, TKGs contain rich temporal information, thus requiring temporal reasoning techniques for modeling. This poses a greater challenge in learning few-shot relations in the temporal context. In this paper, we follow the previous work that focuses on few-shot relational learning on static KGs and extend two fundamental TKG reasoning tasks, i.e., interpolated and extrapolated link prediction, to the one-shot setting. We propose four new large-scale benchmark datasets and develop a TKG reasoning model for learning one-shot relations in TKGs. Experimental results show that our model can achieve superior performance on all datasets in both TKG link prediction tasks.


Logic and Commonsense-Guided Temporal Knowledge Graph Completion

arXiv.org Artificial Intelligence

A temporal knowledge graph (TKG) stores the events derived from the data involving time. Predicting events is extremely challenging due to the time-sensitive property of events. Besides, the previous TKG completion (TKGC) approaches cannot represent both the timeliness and the causality properties of events, simultaneously. To address these challenges, we propose a Logic and Commonsense-Guided Embedding model (LCGE) to jointly learn the time-sensitive representation involving timeliness and causality of events, together with the time-independent representation of events from the perspective of commonsense. Specifically, we design a temporal rule learning algorithm to construct a rule-guided predicate embedding regularization strategy for learning the causality among events. Furthermore, we could accurately evaluate the plausibility of events via auxiliary commonsense knowledge. The experimental results of TKGC task illustrate the significant performance improvements of our model compared with the existing approaches. More interestingly, our model is able to provide the explainability of the predicted results in the view of causal inference. The source code and datasets of this paper are available at https://github.com/ngl567/LCGE.