Temporal Reasoning
Sequential Recommendation on Temporal Proximities with Contrastive Learning and Self-Attention
Jung, Hansol, Seo, Hyunwoo, Lim, Chiehyeon
Sequential recommender systems identify user preferences from their past interactions to predict subsequent items optimally. Although traditional deep-learning-based models and modern transformer-based models in previous studies capture unidirectional and bidirectional patterns within user-item interactions, the importance of temporal contexts, such as individual behavioral and societal trend patterns, remains underexplored. Notably, recent models often neglect similarities in users' actions that occur implicitly among users during analogous timeframes-a concept we term vertical temporal proximity. These models primarily adapt the self-attention mechanisms of the transformer to consider the temporal context in individual user actions. Meanwhile, this adaptation still remains limited in considering the horizontal temporal proximity within item interactions, like distinguishing between subsequent item purchases within a week versus a month. To address these gaps, we propose a sequential recommendation model called TemProxRec, which includes contrastive learning and self-attention methods to consider temporal proximities both across and within user-item interactions. The proposed contrastive learning method learns representations of items selected in close temporal periods across different users to be close. Simultaneously, the proposed self-attention mechanism encodes temporal and positional contexts in a user sequence using both absolute and relative embeddings. This way, our TemProxRec accurately predicts the relevant items based on the user-item interactions within a specific timeframe. We validate this work through comprehensive experiments on TemProxRec, consistently outperforming existing models on benchmark datasets as well as showing the significance of considering the vertical and horizontal temporal proximities into sequential recommendation.
Temporal Analysis of Drifting Hashtags in Textual Data Streams: A Graph-Based Application
Garcia, Cristiano M., Britto, Alceu de Souza Jr, Barddal, Jean Paul
Social media has played an important role since its emergence. People use the internet to express opinions about anything, making social media platforms a social sensor. Initially supported by Twitter, the hashtags are now in use on several social media platforms. Hashtags are helpful to tag, track, and group posts on similar topics. In this paper, we analyze hashtag drifts over time using concepts from graph analysis and textual data streams using the Girvan-Newman method to uncover hashtag communities in annual snapshots. More specifically, we analyzed the #mybodymychoice hashtag between 2018 and 2022. In addition, we offer insights about some hashtags found in the study. Furthermore, our approach can be useful for monitoring changes over time in opinions and sentiment patterns about an entity on social media. Even though the hashtag #mybodymychoice was initially coupled with women's rights, abortion, and bodily autonomy, we observe that it suffered drifts during the studied period across topics such as drug legalization, vaccination, political protests, war, and civil rights. The year 2021 was the most significant drifting year, in which the communities detected suggest that #mybodymychoice significantly drifted to vaccination and Covid-19-related topics.
Temporal Inductive Path Neural Network for Temporal Knowledge Graph Reasoning
Dong, Hao, Wang, Pengyang, Xiao, Meng, Ning, Zhiyuan, Wang, Pengfei, Zhou, Yuanchun
Temporal Knowledge Graph (TKG) is an extension of traditional Knowledge Graph (KG) that incorporates the dimension of time. Reasoning on TKGs is a crucial task that aims to predict future facts based on historical occurrences. The key challenge lies in uncovering structural dependencies within historical subgraphs and temporal patterns. Most existing approaches model TKGs relying on entity modeling, as nodes in the graph play a crucial role in knowledge representation. However, the real-world scenario often involves an extensive number of entities, with new entities emerging over time. This makes it challenging for entity-dependent methods to cope with extensive volumes of entities, and effectively handling newly emerging entities also becomes a significant challenge. Therefore, we propose Temporal Inductive Path Neural Network (TiPNN), which models historical information in an entity-independent perspective. Specifically, TiPNN adopts a unified graph, namely history temporal graph, to comprehensively capture and encapsulate information from history. Subsequently, we utilize the defined query-aware temporal paths on a history temporal graph to model historical path information related to queries for reasoning. Extensive experiments illustrate that the proposed model not only attains significant performance enhancements but also handles inductive settings, while additionally facilitating the provision of reasoning evidence through history temporal graphs.
STAIR: Spatial-Temporal Reasoning with Auditable Intermediate Results for Video Question Answering
Wang, Yueqian, Wang, Yuxuan, Chen, Kai, Zhao, Dongyan
Recently we have witnessed the rapid development of video question answering models. However, most models can only handle simple videos in terms of temporal reasoning, and their performance tends to drop when answering temporal-reasoning questions on long and informative videos. To tackle this problem we propose STAIR, a Spatial-Temporal Reasoning model with Auditable Intermediate Results for video question answering. STAIR is a neural module network, which contains a program generator to decompose a given question into a hierarchical combination of several sub-tasks, and a set of lightweight neural modules to complete each of these sub-tasks. Though neural module networks are already widely studied on image-text tasks, applying them to videos is a non-trivial task, as reasoning on videos requires different abilities. In this paper, we define a set of basic video-text sub-tasks for video question answering and design a set of lightweight modules to complete them. Different from most prior works, modules of STAIR return intermediate outputs specific to their intentions instead of always returning attention maps, which makes it easier to interpret and collaborate with pre-trained models. We also introduce intermediate supervision to make these intermediate outputs more accurate. We conduct extensive experiments on several video question answering datasets under various settings to show STAIR's performance, explainability, compatibility with pre-trained models, and applicability when program annotations are not available. Code: https://github.com/yellow-binary-tree/STAIR
TimeGraphs: Graph-based Temporal Reasoning
Maheshwari, Paridhi, Ren, Hongyu, Wang, Yanan, Sosic, Rok, Leskovec, Jure
Many real-world systems exhibit temporal, dynamic behaviors, which are captured as time series of complex agent interactions. To perform temporal reasoning, current methods primarily encode temporal dynamics through simple sequence-based models. However, in general these models fail to efficiently capture the full spectrum of rich dynamics in the input, since the dynamics is not uniformly distributed. In particular, relevant information might be harder to extract and computing power is wasted for processing all individual timesteps, even if they contain no significant changes or no new information. Here we propose TimeGraphs, a novel approach that characterizes dynamic interactions as a hierarchical temporal graph, diverging from traditional sequential representations. Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales. Adopting a self-supervised method, TimeGraphs constructs a multi-level event hierarchy from a temporal input, which is then used to efficiently reason about the unevenly distributed dynamics. This construction process is scalable and incremental to accommodate streaming data. We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset. The results demonstrate both robustness and efficiency of TimeGraphs on a range of temporal reasoning tasks. Our approach obtains state-of-the-art performance and leads to a performance increase of up to 12.2% on event prediction and recognition tasks over current approaches. Our experiments further demonstrate a wide array of capabilities including zero-shot generalization, robustness in case of data sparsity, and adaptability to streaming data flow.
HGE: Embedding Temporal Knowledge Graphs in a Product Space of Heterogeneous Geometric Subspaces
Pan, Jiaxin, Nayyeri, Mojtaba, Li, Yinan, Staab, Steffen
Temporal knowledge graphs represent temporal facts $(s,p,o,\tau)$ relating a subject $s$ and an object $o$ via a relation label $p$ at time $\tau$, where $\tau$ could be a time point or time interval. Temporal knowledge graphs may exhibit static temporal patterns at distinct points in time and dynamic temporal patterns between different timestamps. In order to learn a rich set of static and dynamic temporal patterns and apply them for inference, several embedding approaches have been suggested in the literature. However, as most of them resort to single underlying embedding spaces, their capability to model all kinds of temporal patterns was severely limited by having to adhere to the geometric property of their one embedding space. We lift this limitation by an embedding approach that maps temporal facts into a product space of several heterogeneous geometric subspaces with distinct geometric properties, i.e.\ Complex, Dual, and Split-complex spaces. In addition, we propose a temporal-geometric attention mechanism to integrate information from different geometric subspaces conveniently according to the captured relational and temporal information. Experimental results on standard temporal benchmark datasets favorably evaluate our approach against state-of-the-art models.
Referred by Multi-Modality: A Unified Temporal Transformer for Video Object Segmentation
Yan, Shilin, Zhang, Renrui, Guo, Ziyu, Chen, Wenchao, Zhang, Wei, Li, Hongyang, Qiao, Yu, Dong, Hao, He, Zhongjiang, Gao, Peng
Recently, video object segmentation (VOS) referred by multi-modal signals, e.g., language and audio, has evoked increasing attention in both industry and academia. It is challenging for exploring the semantic alignment within modalities and the visual correspondence across frames. However, existing methods adopt separate network architectures for different modalities, and neglect the inter-frame temporal interaction with references. In this paper, we propose MUTR, a Multi-modal Unified Temporal transformer for Referring video object segmentation. With a unified framework for the first time, MUTR adopts a DETR-style transformer and is capable of segmenting video objects designated by either text or audio reference. Specifically, we introduce two strategies to fully explore the temporal relations between videos and multi-modal signals. Firstly, for low-level temporal aggregation before the transformer, we enable the multi-modal references to capture multi-scale visual cues from consecutive video frames. This effectively endows the text or audio signals with temporal knowledge and boosts the semantic alignment between modalities. Secondly, for high-level temporal interaction after the transformer, we conduct inter-frame feature communication for different object embeddings, contributing to better object-wise correspondence for tracking along the video. On Ref-YouTube-VOS and AVSBench datasets with respective text and audio references, MUTR achieves +4.2% and +8.7% J&F improvements to state-of-the-art methods, demonstrating our significance for unified multi-modal VOS. Code is released at https://github.com/OpenGVLab/MUTR.
GTRL: An Entity Group-Aware Temporal Knowledge Graph Representation Learning Method
Temporal Knowledge Graph (TKG) representation learning embeds entities and event types into a continuous low-dimensional vector space by integrating the temporal information, which is essential for downstream tasks, e.g., event prediction and question answering. Existing methods stack multiple graph convolution layers to model the influence of distant entities, leading to the over-smoothing problem. To alleviate the problem, recent studies infuse reinforcement learning to obtain paths that contribute to modeling the influence of distant entities. However, due to the limited number of hops, these studies fail to capture the correlation between entities that are far apart and even unreachable. To this end, we propose GTRL, an entity Group-aware Temporal knowledge graph Representation Learning method. GTRL is the first work that incorporates the entity group modeling to capture the correlation between entities by stacking only a finite number of layers. Specifically, the entity group mapper is proposed to generate entity groups from entities in a learning way. Based on entity groups, the implicit correlation encoder is introduced to capture implicit correlations between any pairwise entity groups. In addition, the hierarchical GCNs are exploited to accomplish the message aggregation and representation updating on the entity group graph and the entity graph. Finally, GRUs are employed to capture the temporal dependency in TKGs. Extensive experiments on three real-world datasets demonstrate that GTRL achieves the state-of-the-art performances on the event prediction task, outperforming the best baseline by an average of 13.44%, 9.65%, 12.15%, and 15.12% in MRR, Hits@1, Hits@3, and Hits@10, respectively.
Learning Multi-graph Structure for Temporal Knowledge Graph Reasoning
Zhang, Jinchuan, Hui, Bei, Mu, Chong, Tian, Ling
Temporal Knowledge Graph (TKG) reasoning that forecasts future events based on historical snapshots distributed over timestamps is denoted as extrapolation and has gained significant attention. Owing to its extreme versatility and variation in spatial and temporal correlations, TKG reasoning presents a challenging task, demanding efficient capture of concurrent structures and evolutional interactions among facts. While existing methods have made strides in this direction, they still fall short of harnessing the diverse forms of intrinsic expressive semantics of TKGs, which encompass entity correlations across multiple timestamps and periodicity of temporal information. This limitation constrains their ability to thoroughly reflect historical dependencies and future trends. In response to these drawbacks, this paper proposes an innovative reasoning approach that focuses on Learning Multi-graph Structure (LMS). Concretely, it comprises three distinct modules concentrating on multiple aspects of graph structure knowledge within TKGs, including concurrent and evolutional patterns along timestamps, query-specific correlations across timestamps, and semantic dependencies of timestamps, which capture TKG features from various perspectives. Besides, LMS incorporates an adaptive gate for merging entity representations both along and across timestamps effectively. Moreover, it integrates timestamp semantics into graph attention calculations and time-aware decoders, in order to impose temporal constraints on events and narrow down prediction scopes with historical statistics. Extensive experimental results on five event-based benchmark datasets demonstrate that LMS outperforms state-of-the-art extrapolation models, indicating the superiority of modeling a multi-graph perspective for TKG reasoning.
Local-Global History-aware Contrastive Learning for Temporal Knowledge Graph Reasoning
Chen, Wei, Wan, Huaiyu, Wu, Yuting, Zhao, Shuyuan, Cheng, Jiayaqi, Li, Yuxin, Lin, Youfang
Temporal knowledge graphs (TKGs) have been identified as a promising approach to represent the dynamics of facts along the timeline. The extrapolation of TKG is to predict unknowable facts happening in the future, holding significant practical value across diverse fields. Most extrapolation studies in TKGs focus on modeling global historical fact repeating and cyclic patterns, as well as local historical adjacent fact evolution patterns, showing promising performance in predicting future unknown facts. Yet, existing methods still face two major challenges: (1) They usually neglect the importance of historical information in KG snapshots related to the queries when encoding the local and global historical information; (2) They exhibit weak anti-noise capabilities, which hinders their performance when the inputs are contaminated with noise.To this end, we propose a novel \blue{Lo}cal-\blue{g}lobal history-aware \blue{C}ontrastive \blue{L}earning model (\blue{LogCL}) for TKG reasoning, which adopts contrastive learning to better guide the fusion of local and global historical information and enhance the ability to resist interference. Specifically, for the first challenge, LogCL proposes an entity-aware attention mechanism applied to the local and global historical facts encoder, which captures the key historical information related to queries. For the latter issue, LogCL designs four historical query contrast patterns, effectively improving the robustness of the model. The experimental results on four benchmark datasets demonstrate that LogCL delivers better and more robust performance than the state-of-the-art baselines.