Goto

Collaborating Authors

 Temporal Reasoning


Spatio-Temporal Analysis of Reverted Wikipedia Edits

AAAI Conferences

Little is known about what causes anti-social behavior online. The paper at hand analyzes vandalism and damage in Wikipedia with regard to the time it is conducted and the country it originates from. First, we identify vandalism and damaging edits via ex post facto evidence by mining Wikipedia’s revert graph. Second, we geolocate the cohort of edits from anonymous Wikipedia editors using their associated IP addresses and edit times, showing the feasibility of reliable historic geolocation with respect to country and time zone, even under limited geolocation data. Third, we conduct the first spatio-temporal analysis of vandalism on Wikipedia. Our analysis reveals significant differences for vandalism activities during the day, and for different days of the week, seasons, countries of origin, as well as Wikipedia’s languages. For the analyzed countries, the ratio is typically highest at non-summer workday mornings, with additional peaks after break times. We hence assume that Wikipedia vandalism is linked to labor, perhaps serving as relief from stress or boredom, whereas cultural differences have a large effect. Our results open up avenues for new research on collaborative writing at scale, and advanced technologies to identify and handle antisocial behavior in online communities.


Dynamic Controllability of Disjunctive Temporal Networks: Validation and Synthesis of Executable Strategies

AAAI Conferences

The Temporal Network with Uncertainty (TNU) modeling framework is used to represent temporal knowledge in presence of qualitative temporal uncertainty. Dynamic Controllability (DC) is the problem of deciding the existence of a strategy for scheduling the controllable time points of the network observing past happenings only. In this paper, we address the DC problem for a very general class of TNU, namely Disjunctive Temporal Network with Uncertainty. We make the following contributions. First, we define strategies in the form of an executable language; second, we propose the first decision procedure to check whether a given strategy is a solution for the DC problem; third we present an efficient algorithm for strategy synthesis based on techniques derived from Timed Games and Satisfiability Modulo Theory. The experimental evaluation shows that the approach is superior to the state-of-the-art.


Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning

Neural Information Processing Systems

Accurate and efficient analysis of multivariate spatio-temporal data is critical in climatology, geology, and sociology applications. Existing models usually assume simple inter-dependence among variables, space, and time, and are computationally expensive. We propose a unified low rank tensor learning framework for multivariate spatio-temporal analysis, which can conveniently incorporate different properties in spatio-temporal data, such as spatial clustering and shared structure among variables. We demonstrate how the general framework can be applied to cokriging and forecasting tasks, and develop an efficient greedy algorithm to solve the resulting optimization problem with convergence guarantee. We conduct experiments on both synthetic datasets and real application datasets to demonstrate that our method is not only significantly faster than existing methods but also achieves lower estimation error.


An Introduction to Constraint-Based Temporal Reasoning

Morgan & Claypool Publishers

This book provides a concise introduction to the core computational elements of temporal reasoning for use in AI systems for planning and scheduling, as well as systems that extract temporal information from data. It presents a survey of temporal frameworks based on constraints, both qualitative and quantitative, as well as of major temporal consistency techniques. ISBN 9781608459674, 121 pages.


Towards The Inductive Acquisition of Temporal Knowledge

arXiv.org Artificial Intelligence

The ability to predict the future in a given domain can be acquired by discovering empirically from experience certain temporal patterns that tend to repeat unerringly. Previous works in time series analysis allow one to make quantitative predictions on the likely values of certain linear variables. Since certain types of knowledge are better expressed in symbolic forms, making qualitative predictions based on symbolic representations require a different approach. A domain independent methodology called TIM (Time based Inductive Machine) for discovering potentially uncertain temporal patterns from real time observations using the technique of inductive inference is described here.


A Temporal Analysis of Posting Behavior in Social Media Streams

AAAI Conferences

In this work, we investigated the social media streams to understand their characteristics and their temporal aspects. We assumed that each blogger has different temporal preference for posting. To investigate this hypothesis, we analyzed a massive dataset, nearly 700,000 blog articles, with the consideration of two factors which are day of the week and time of the day. The comparison was done in manifold ways: Blogosphere vs. Twitter, commercial blogs vs. non-commercial blogs, and their individuals. We hope that this work provides a hint to develop a personalized system which can be used for the reduction of the system resources for pull/fetch technology.


Exploring Millions of Footprints in Location Sharing Services

AAAI Conferences

Location sharing services (LSS) like Foursquare, Gowalla, and Facebook Places support hundreds of millions of user-driven footprints (i.e., "checkins"). Those global-scale footprints provide a unique opportunity to study the social and temporal characteristics of how people use these services and to model patterns of human mobility, which are significant factors for the design of future mobile+location-based services, traffic forecasting, urban planning, as well as epidemiological models of disease spread. In this paper, we investigate 22 million checkins across 220,000 users and report a quantitative assessment of human mobility patterns by analyzing the spatial, temporal, social, and textual aspects associated with these footprints. We find that: (i) LSS users follow the “Levy Flight” mobility pattern and adopt periodic behaviors; (ii) While geographic and economic constraints affect mobility patterns, so does individual social status; and (iii) Content and sentiment-based analysis of posts associated with checkins can provide a rich source of context for better understanding how users engage with these services.


The Design and Experimental Analysis of Algorithms for Temporal Reasoning

Journal of Artificial Intelligence Research

Many applications -- from planning and scheduling to problems in molecular biology -- rely heavily on a temporal reasoning component. In this paper, we discuss the design and empirical analysis of algorithms for a temporal reasoning system based on Allen's influential interval-based framework for representing temporal information. At the core of the system are algorithms for determining whether the temporal information is consistent, and, if so, finding one or more scenarios that are consistent with the temporal information. Two important algorithms for these tasks are a path consistency algorithm and a backtracking algorithm. For the path consistency algorithm, we develop techniques that can result in up to a ten-fold speedup over an already highly optimized implementation. For the backtracking algorithm, we develop variable and value ordering heuristics that are shown empirically to dramatically improve the performance of the algorithm. As well, we show that a previously suggested reformulation of the backtracking search problem can reduce the time and space requirements of the backtracking search. Taken together, the techniques we develop allow a temporal reasoning component to solve problems that are of practical size.


Temporal reasoning

Classics

In Howard Shrobe, editor, Exploring Artificial Intelligence. Morgan Kaufmann