Temporal Reasoning
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs Julia Gastinger 1,2,6 Shenyang Huang 1,4 Mikhail Galkin 3
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entities over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark.
Learning to Sample and Aggregate: Few-shot Reasoning over Temporal Knowledge Graphs
In this paper, we investigate a realistic but underexplored problem, called few-shot temporal knowledge graph reasoning, that aims to predict future facts for newly emerging entities based on extremely limited observations in evolving graphs. It offers practical value in applications that need to derive instant new knowledge about new entities in temporal knowledge graphs (TKGs) with minimal supervision. The challenges mainly come from the few-shot and time shift properties of new entities. First, the limited observations associated with them are insufficient for training a model from scratch. Second, the potentially dynamic distributions from the initially observable facts to the future facts ask for explicitly modeling the evolving characteristics of new entities.
Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning
Temporal Knowledge Graph Reasoning (TKGR) is the process of utilizing temporal information to capture complex relations within a Temporal Knowledge Graph (TKG) to infer new knowledge. Conventional methods in TKGR typically depend on deep learning algorithms or temporal logical rules. However, deep learningbased TKGRs often lack interpretability, whereas rule-based TKGRs struggle to effectively learn temporal rules that capture temporal patterns. Recently, Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning. Consequently, the employment of LLMs for Temporal Knowledge Graph Reasoning (TKGR) has sparked increasing interest among researchers.
TGB 2.0: A Benchmark for Learning on Temporal Knowledge Graphs and Heterogeneous Graphs
Multi-relational temporal graphs are powerful tools for modeling real-world data, capturing the evolving and interconnected nature of entities over time. Recently, many novel models are proposed for ML on such graphs intensifying the need for robust evaluation and standardized benchmark datasets. However, the availability of such resources remains scarce and evaluation faces added complexity due to reproducibility issues in experimental protocols. To address these challenges, we introduce Temporal Graph Benchmark 2.0 (TGB 2.0), a novel benchmarking framework tailored for evaluating methods for predicting future links on Temporal Knowledge Graphs and Temporal Heterogeneous Graphs with a focus on large-scale datasets, extending the Temporal Graph Benchmark. TGB 2.0 datasets are significantly largerthan existing datasets in terms of number of nodes, edges, or timestamps. In addition, TGB 2.0 provides a reproducible and realistic evaluation pipeline for multi-relational temporal graphs.
Logic-in-Frames: Dynamic Keyframe Search via Visual Semantic-Logical Verification for Long Video Understanding
Guo, Weiyu, Chen, Ziyang, Wang, Shaoguang, He, Jianxiang, Xu, Yijie, Ye, Jinhui, Sun, Ying, Xiong, Hui
Understanding long video content is a complex endeavor that often relies on densely sampled frame captions or end-to-end feature selectors, yet these techniques commonly overlook the logical relationships between textual queries and visual elements. In practice, computational constraints necessitate coarse frame subsampling, a challenge analogous to ``finding a needle in a haystack.'' To address this issue, we introduce a semantics-driven search framework that reformulates keyframe selection under the paradigm of Visual Semantic-Logical Search. Specifically, we systematically define four fundamental logical dependencies: 1) spatial co-occurrence, 2) temporal proximity, 3) attribute dependency, and 4) causal order. These relations dynamically update frame sampling distributions through an iterative refinement process, enabling context-aware identification of semantically critical frames tailored to specific query requirements. Our method establishes new SOTA performance on the manually annotated benchmark in key-frame selection metrics. Furthermore, when applied to downstream video question-answering tasks, the proposed approach demonstrates the best performance gains over existing methods on LongVideoBench and Video-MME, validating its effectiveness in bridging the logical gap between textual queries and visual-temporal reasoning. The code will be publicly available.
DECRL: A Deep Evolutionary Clustering Jointed Temporal Knowledge Graph Representation Learning Approach
Temporal Knowledge Graph (TKG) representation learning aims to map temporal evolving entities and relations to embedded representations in a continuous low-dimensional vector space. To this end, we propose a Deep Evolutionary Clustering jointed temporal knowledge graph Representation Learning approach (DECRL). Specifically, a deep evolutionary clustering module is proposed to capture the temporal evolution of high-order correlations among entities. Furthermore, a cluster-aware unsupervised alignment mechanism is introduced to ensure the precise one-to-one alignment of soft overlapping clusters across timestamps, thereby maintaining the temporal smoothness of clusters. In addition, an implicit correlation encoder is introduced to capture latent correlations between any pair of clusters under the guidance of a global graph.
Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning
Temporal Knowledge Graph Reasoning (TKGR) is the process of utilizing temporal information to capture complex relations within a Temporal Knowledge Graph (TKG) to infer new knowledge. Conventional methods in TKGR typically depend on deep learning algorithms or temporal logical rules. However, deep learning-based TKGRs often lack interpretability, whereas rule-based TKGRs struggle to effectively learn temporal rules that capture temporal patterns. Recently, Large Language Models (LLMs) have demonstrated extensive knowledge and remarkable proficiency in temporal reasoning. Consequently, the employment of LLMs for Temporal Knowledge Graph Reasoning (TKGR) has sparked increasing interest among researchers. Nonetheless, LLMs are known to function as black boxes, making it challenging to comprehend their reasoning process.
Temporal Analysis of NetFlow Datasets for Network Intrusion Detection Systems
Luay, Majed, Layeghy, Siamak, Hosseininoorbin, Seyedehfaezeh, Sarhan, Mohanad, Moustafa, Nour, Portmann, Marius
This paper investigates the temporal analysis of NetFlow datasets for machine learning (ML)-based network intrusion detection systems (NIDS). Although many previous studies have highlighted the critical role of temporal features, such as inter-packet arrival time and flow length/duration, in NIDS, the currently available NetFlow datasets for NIDS lack these temporal features. This study addresses this gap by creating and making publicly available a set of NetFlow datasets that incorporate these temporal features [1]. With these temporal features, we provide a comprehensive temporal analysis of NetFlow datasets by examining the distribution of various features over time and presenting time-series representations of NetFlow features. This temporal analysis has not been previously provided in the existing literature. We also borrowed an idea from signal processing, time frequency analysis, and tested it to see how different the time frequency signal presentations (TFSPs) are for various attacks. The results indicate that many attacks have unique patterns, which could help ML models to identify them more easily.
Benchmarking Temporal Reasoning and Alignment Across Chinese Dynasties
Wang, Zhenglin, Wu, Jialong, LI, Pengfei, Jiang, Yong, Zhou, Deyu
Temporal reasoning is fundamental to human cognition and is crucial for various real-world applications. While recent advances in Large Language Models have demonstrated promising capabilities in temporal reasoning, existing benchmarks primarily rely on rule-based construction, lack contextual depth, and involve a limited range of temporal entities. To address these limitations, we introduce Chinese Time Reasoning (CTM), a benchmark designed to evaluate LLMs on temporal reasoning within the extensive scope of Chinese dynastic chronology. CTM emphasizes cross-entity relationships, pairwise temporal alignment, and contextualized and culturally-grounded reasoning, providing a comprehensive evaluation. Extensive experimental results reveal the challenges posed by CTM and highlight potential avenues for improvement.