Goto

Collaborating Authors

 Search



Classifier systems and genetic algorithms

Classics

ABSTRACT Classifier systems are massively parallel, message-passing, rule-based systems that learn through credit assignment (the bucket brigade algorithm) and rule discovery (the genetic algorithm). They typically operate in environments that exhibit one or more of the following characteristics: (1) perpetually novel events accompanied by large amounts of noisy or irrelevant data; (2) continual, often real-time, requirements for action; (3) implicitly or inexactly defined goals; and (4) sparse payoff or reinforcement obtainable only through long action sequences. Classifier systems are designed to absorb new information continuously from such environments, devising sets of compet- ing hypotheses (expressed as rules) without disturbing significantly capabilities already acquired. This paper reviews the definition, theory, and extant applications of classifier systems, comparing them with other machine learning techniques, and closing with a discussion of advantages, problems, and possible extensions of classifier systems. Artificial Intelligence, 40 (1-3), 235-82.





LEARNING BY STATE RECURRENCE DETECTION

Neural Information Processing Systems

The approach is applied both to Michie and Chambers BOXES algorithm and to Barto, Sutton and Anderson's extension, the ASE/ACE system, and has significantly improved the convergence rate of stochastically based learning automata. Recurrencelearning is a new nonlinear reward-penalty algorithm. It exploits information found during learning trials to reinforce decisions resulting in the recurrence of nonfailing states. Recurrence learning applies positive reinforcement during the exploration of the search space, whereas in the BOXES or ASE algorithms, only negative weight reinforcement is applied, and then only on failure. Simulation results show that the added information from recurrence learning increases the learning rate.


LEARNING BY STATE RECURRENCE DETECTION

Neural Information Processing Systems

LEARNING BY ST ATE RECURRENCE DETECfION Bruce E. Rosen, James M. Goodwint, and Jacques J. Vidal University of California, Los Angeles, Ca. 90024 ABSTRACT This research investigates a new technique for unsupervised learning of nonlinear control problems. The approach is applied both to Michie and Chambers BOXES algorithm and to Barto, Sutton and Anderson's extension, the ASE/ACE system, and has significantly improved the convergence rate of stochastically based learning automata. Recurrence learning is a new nonlinear reward-penalty algorithm. It exploits information found during learning trials to reinforce decisions resulting in the recurrence of nonfailing states. Recurrence learning applies positive reinforcement during the exploration of the search space, whereas in the BOXES or ASE algorithms, only negative weight reinforcement is applied, and then only on failure. Simulation results show that the added information from recurrence learning increases the learning rate. Our empirical results show that recurrence learning is faster than both basic failure driven learning and failure prediction methods. Although recurrence learning has only been tested in failure driven experiments, there are goal directed learning applications where detection of recurring oscillations may provide useful information that reduces the learning time by applying negative, instead of positive reinforcement.


Foundations and Grand Challenges of Artificial Intelligence: AAAI Presidential Address

AI Magazine

AAAI is a society devoted to supporting the progress in science, technology and applications of AI. I thought I would use this occasion to share with you some of my thoughts on the recent advances in AI, the insights and theoretical foundations that have emerged out of the past thirty years of stable, sustained, systematic explorations in our field, and the grand challenges motivating the research in our field.


Minimaxing: Theory and Practice

AI Magazine

Empirical evidence suggests that searching deeper in game trees using the minimax propagation rule usually improves the quality of decisions significantly. However, despite many recent theoretical analyses of the effects of minimax look ahead, however, this phenomenon has still not been convincingly explained. Instead, much attention has been given to so-called pathological behavior, which occurs under certain assumptions. This article supports the view that pathology is a direct result of these underlying theoretical assumptions. Pathology does not occur in practice, because these assumptions do not apply in realistic domains. The article presents several arguments in favor of minimaxing and focuses attention on the gap between their analytical formulation and their practical meaning. A new model is presented based on the strict separation of static and dynamic aspects in practical programs. finally, certain methods of improving minimax look-ahead are discussed, drawing on insights gained from this research.


Backtrack searching in the presence of symmetry

Classics

In Mora, T. (Ed.), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 99–110. Springer-Verlag.