Goto

Collaborating Authors

Search


A Comprehensive Guide to Graph Search in Python

#artificialintelligence

Unlike DFS, which goes deep in a certain direction first before considering another direction, BFS will analyze the next node in each possible direction first and then repeat the process for the next node in each direction. So instead of working on one path/direction all the way, it is analyzing all the possible paths at the same time, node to node. It will analyze the first node in each direction, and then analyze the second node each direction, and repeat the process until the target node is found. Once the target node or solution is found, it stops looking. This algorithm is guaranteed to find the optimum solution as it will be going over all the paths at the same time and which ever reaches the goal first will be the optimum path/solution.


A Comprehensive Guide to Graph Search in Python

#artificialintelligence

A Graph is a data structure consisting of finite number of nodes (or vertices) and edges that connect them. The numbered circles are nodes with the lines connecting them being the edges. A pair (0,1) represents an edge that connects the nodes or vertices 0 and 1. Graphs are used to represent and solve many real life problems. For example, they can represent any network which could be social media like Facebook, LinkedIn etc. or Google maps. In graph search, we traverse or search the graph data structure from node to node. The easiest to understand example would be that of navigation maps like Google Maps.


4 Index Data Structures A Data Engineer Must Know – Fly Spaceships With Your Mind

#artificialintelligence

In this article we will explain what index data structures are and introduce you to some popular structures. In today's world, ever-increasing amounts of data are being processed. The data can be used to derive business strategies in a commercial context, but also to gain valuable information about all scientific disciplines. The data obtained must be saved, ideally as raw data, and stored for future analysis. At the time of creation, it is not yet possible to estimate what information might be valuable at some point.


Machine learning helps in the search for new antibiotics

AIHub

With the search for new antibiotics becoming increasingly urgent, artificial intelligence offers valuable help. Smart software developed by Leiden PhD candidate Alexander Kloosterman searched genomes of bacteria and found clusters of DNA that code for proteins that have an antibiotic effect. "This new search method is enormously promising." The discovery was published in PLoS Biology. Professor of Molecular Biotechnology Gilles van Wezel from the Leiden Institute of Biology (IBL) initiated the research together with visiting professor Marnix Medema.


Causal Inference Under Unmeasured Confounding With Negative Controls: A Minimax Learning Approach

arXiv.org Machine Learning

We study the estimation of causal parameters when not all confounders are observed and instead negative controls are available. Recent work has shown how these can enable identification and efficient estimation via two so-called bridge functions. In this paper, we tackle the primary challenge to causal inference using negative controls: the identification and estimation of these bridge functions. Previous work has relied on uniqueness and completeness assumptions on these functions that may be implausible in practice and also focused on their parametric estimation. Instead, we provide a new identification strategy that avoids both uniqueness and completeness. And, we provide a new estimators for these functions based on minimax learning formulations. These estimators accommodate general function classes such as reproducing Hilbert spaces and neural networks. We study finite-sample convergence results both for estimating bridge function themselves and for the final estimation of the causal parameter. We do this under a variety of combinations of assumptions that include realizability and closedness conditions on the hypothesis and critic classes employed in the minimax estimator. Depending on how much we are willing to assume, we obtain different convergence rates. In some cases, we show the estimate for the causal parameter may converge even when our bridge function estimators do not converge to any valid bridge function. And, in other cases, we show we can obtain semiparametric efficiency.


Neural Architecture Search From Fr\'echet Task Distance

arXiv.org Machine Learning

We formulate a Fr\'echet-type asymmetric distance between tasks based on Fisher Information Matrices. We show how the distance between a target task and each task in a given set of baseline tasks can be used to reduce the neural architecture search space for the target task. The complexity reduction in search space for task-specific architectures is achieved by building on the optimized architectures for similar tasks instead of doing a full search without using this side information. Experimental results demonstrate the efficacy of the proposed approach and its improvements over the state-of-the-art methods.


Active Tree Search in Large POMDPs

arXiv.org Artificial Intelligence

Model-based planning and prospection are widely studied in both cognitive neuroscience and artificial intelligence (AI), but from different perspectives - and with different desiderata in mind (biological realism versus scalability) that are difficult to reconcile. Here, we introduce a novel method to plan in large POMDPs - Active Tree Search - that combines the normative character and biological realism of a leading planning theory in neuroscience (Active Inference) and the scalability of Monte-Carlo methods in AI. This unification is beneficial for both approaches. On the one hand, using Monte-Carlo planning permits scaling up the biologically grounded approach of Active Inference to large-scale problems. On the other hand, the theory of Active Inference provides a principled solution to the balance of exploration and exploitation, which is often addressed heuristically in Monte-Carlo methods. Our simulations show that Active Tree Search successfully navigates binary trees that are challenging for sampling-based methods, problems that require adaptive exploration, and the large POMDP problem Rocksample. Furthermore, we illustrate how Active Tree Search can be used to simulate neurophysiological responses (e.g., in the hippocampus and prefrontal cortex) of humans and other animals that contain large planning problems. These simulations show that Active Tree Search is a principled realisation of neuroscientific and AI theories of planning, which offers both biological realism and scalability.


A*+BFHS: A Hybrid Heuristic Search Algorithm

arXiv.org Artificial Intelligence

We present a new algorithm A*+BFHS for solving hard problems where A* and IDA* fail due to memory limitations and/or the existence of many short cycles. A*+BFHS is based on A* and breadth-first heuristic search (BFHS). A*+BFHS combines advantages from both algorithms, namely A*'s node ordering, BFHS's memory savings, and both algorithms' duplicate detection. On easy problems, A*+BFHS behaves the same as A*. On hard problems, it is slower than A* but saves a large amount of memory. Compared to BFIDA*, A*+BFHS reduces the search time and/or memory requirement by several times on a variety of planning domains.


Policy-Guided Heuristic Search with Guarantees

arXiv.org Artificial Intelligence

The use of a policy and a heuristic function for guiding search can be quite effective in adversarial problems, as demonstrated by AlphaGo and its successors, which are based on the PUCT search algorithm. While PUCT can also be used to solve single-agent deterministic problems, it lacks guarantees on its search effort and it can be computationally inefficient in practice. Combining the A* algorithm with a learned heuristic function tends to work better in these domains, but A* and its variants do not use a policy. Moreover, the purpose of using A* is to find solutions of minimum cost, while we seek instead to minimize the search loss (e.g., the number of search steps). LevinTS is guided by a policy and provides guarantees on the number of search steps that relate to the quality of the policy, but it does not make use of a heuristic function. In this work we introduce Policy-guided Heuristic Search (PHS), a novel search algorithm that uses both a heuristic function and a policy and has theoretical guarantees on the search loss that relates to both the quality of the heuristic and of the policy. We show empirically on the sliding-tile puzzle, Sokoban, and a puzzle from the commercial game `The Witness' that PHS enables the rapid learning of both a policy and a heuristic function and compares favorably with A*, Weighted A*, Greedy Best-First Search, LevinTS, and PUCT in terms of number of problems solved and search time in all three domains tested.


Dual Monte Carlo Tree Search

arXiv.org Artificial Intelligence

AlphaZero, using a combination of Deep Neural Networks and Monte Carlo Tree Search (MCTS), has successfully trained reinforcement learning agents in a tabula-rasa way. The neural MCTS algorithm has been successful in finding near-optimal strategies for games through self-play. However, the AlphaZero algorithm has a significant drawback; it takes a long time to converge and requires high computational power due to complex neural networks for solving games like Chess, Go, Shogi, etc. Owing to this, it is very difficult to pursue neural MCTS research without cutting-edge hardware, which is a roadblock for many aspiring neural MCTS researchers. In this paper, we propose a new neural MCTS algorithm, called Dual MCTS, which helps overcome these drawbacks. Dual MCTS uses two different search trees, a single deep neural network, and a new update technique for the search trees using a combination of the PUCB, a sliding-window, and the epsilon-greedy algorithm. This technique is applicable to any MCTS based algorithm to reduce the number of updates to the tree. We show that Dual MCTS performs better than one of the most widely used neural MCTS algorithms, AlphaZero, for various symmetric and asymmetric games.