Collaborating Authors

Nonmonotonic Logic

Refining the Semantics of Epistemic Specifications Artificial Intelligence

Answer set programming (ASP) is an efficient problem-solving approach, which has been strongly supported both scientifically and technologically by several solvers, ongoing active research, and implementations in many different fields. However, although researchers acknowledged long ago the necessity of epistemic operators in the language of ASP for better introspective reasoning, this research venue did not attract much attention until recently. Moreover, the existing epistemic extensions of ASP in the literature are not widely approved either, due to the fact that some propose unintended results even for some simple acyclic epistemic programs, new unexpected results may possibly be found, and more importantly, researchers have different reasonings for some critical programs. To that end, Cabalar et al. have recently identified some structural properties of epistemic programs to formally support a possible semantics proposal of such programs and standardise their results. Nonetheless, the soundness of these properties is still under debate, and they are not widely accepted either by the ASP community. Thus, it seems that there is still time to really understand the paradigm, have a mature formalism, and determine the principles providing formal justification of their understandable models. In this paper, we mainly focus on the existing semantics approaches, the criteria that a satisfactory semantics is supposed to satisfy, and the ways to improve them. We also extend some well-known propositions of here-and-there logic (HT) into epistemic HT so as to reveal the real behaviour of programs. Finally, we propose a slightly novel semantics for epistemic ASP, which can be considered as a reflexive extension of Cabalar et al.'s recent formalism called autoepistemic ASP.

Approximating Defeasible Logics to Improve Scalability Artificial Intelligence

Defeasible rules are used in providing computable representations of legal documents and, more recently, have been suggested as a basis for explainable AI. Such applications draw attention to the scalability of implementations. The defeasible logic $DL(\partial_{||})$ was introduced as a more scalable alternative to $DL(\partial)$, which is better known. In this paper we consider the use of (implementations of) $DL(\partial_{||})$ as a computational aid to computing conclusions in $DL(\partial)$ and other defeasible logics, rather than as an alternative to $DL(\partial)$. We identify conditions under which $DL(\partial_{||})$ can be substituted for $DL(\partial)$ with no change to the conclusions drawn, and conditions under which $DL(\partial_{||})$ can be used to draw some valid conclusions, leaving the remainder to be drawn by $DL(\partial)$.

Defeasible Reasoning via Datalog$^\neg$ Artificial Intelligence

Hardware architectures can range from the use of GPUs and other hardware accelerators, through multi-core multi-threaded architectures, to shared-nothing cloud computing. Causes for failure to exploit these architectures include lack of expertise in the architectural features, lack of manpower more generally, and difficulty in updating legacy systems. Such problems can be ameliorated by mapping a logic to logic programming as an intermediate language. This is a common strategy in the implementation of defeasible logics. The first implementation of a defeasible logic, d-Prolog, was implemented as a Prolog meta-interpreter (Covington et al. 1997). Courteous Logic Programs (Grosof 1997) and its successors LPDA (Wan et al. 2009), Rulelog (Grosof and Kifer 2013), Flora2 (Kifer et al. 2018), are implemented in XSB (Swift and Warren 2012).

Relative Expressiveness of Defeasible Logics II Artificial Intelligence

(Maher 2012) introduced an approach for relative expressiveness of defeasible logics, and two notions of relative expressiveness were investigated. Using the first of these definitions of relative expressiveness, we show that all the defeasible logics in the DL framework are equally expressive under this formulation of relative expressiveness. The second formulation of relative expressiveness is stronger than the first. However, we show that logics incorporating individual defeat are equally expressive as the corresponding logics with team defeat. Thus the only differences in expressiveness of logics in DL arise from differences in how ambiguity is handled. This completes the study of relative expressiveness in DL begun in \cite{Maher12}.

Lexicographic Logic: a Many-valued Logic for Preference Representation Artificial Intelligence

Logical formalisms provide a natural and concise means for specifying and reasoning about preferences. In this paper, we propose lexicographic logic, an extension of classical propositional logic that can express a variety of preferences, most notably lexicographic ones. The proposed logic supports a simple new connective whose semantics can be defined in terms of finite lists of truth values. We demonstrate that, despite the well-known theoretical limitations that pose barriers to the quantitative representation of lexicographic preferences, there exists a subset of the rational numbers over which the proposed new connective can be naturally defined. Lexicographic logic can be used to define in a simple way some well-known preferential operators, like "$A$ and if possible $B$", and "$A$ or failing that $B$". Moreover, many other hierarchical preferential operators can be defined using a systematic approach. We argue that the new logic is an effective formalism for ranking query results according to the satisfaction level of user preferences.

An application of Answer Set Programming in Distributed Architectures: ASP Microservices Artificial Intelligence

We propose an approach to the definition of microservices with an Answer Set Programming (ASP) `core', where microservices are a successful abstraction for designing distributed applications as suites of independently deployable interacting components. Such ASP-based components might be employed in distributed architectures related to Cloud Computing or to the Internet of Things (IoT).

Defeasible reasoning in Description Logics: an overview on DL^N Artificial Intelligence

In complex areas such as law and science, knowledge has been in centuries formulated by primarily describing prototypical instances and properties, and then by overriding the general theory to include possible exceptions. For example, many laws are formulated by adding new norms that, in case of conflicts, may partially or completely override the previous ones. Similarly, biologists have been incrementally introducing exceptions to general properties. For instance, the human heart is usually located in the left-hand half of the thorax. Still there are exceptional individuals, with so-called situs inversus, whose heart is located on the opposite side. Eukariotic cells are those with a proper nucleus, by definition. Still they comprise mammalian red blood cells, that in their mature stage have no nucleus.

Towards Ranking-based Semantics for Abstract Argumentation using Conditional Logic Semantics Artificial Intelligence

We propose a novel ranking-based semantics for Dung-style argumentation frameworks with the help of conditional logics. Using an intuitive translation for an argumentation framework to generate conditionals, we can apply nonmonotonic inference systems to generate a ranking on possible worlds. With this ranking we construct a ranking for our arguments. With a small extension to this ranking-based semantics we already satisfy some desirable properties for a ranking over arguments.

Exploiting Game Theory for Analysing Justifications Artificial Intelligence

Justification theory is a unifying semantic framework. While it has its roots in non-monotonic logics, it can be applied to various areas in computer science, especially in explainable reasoning; its most central concept is a justification: an explanation why a property holds (or does not hold) in a model. In this paper, we continue the study of justification theory by means of three major contributions. The first is studying the relation between justification theory and game theory. We show that justification frameworks can be seen as a special type of games. The established connection provides the theoretical foundations for our next two contributions. The second contribution is studying under which condition two different dialects of justification theory (graphs as explanations vs trees as explanations) coincide. The third contribution is establishing a precise criterion of when a semantics induced by justification theory yields consistent results. In the past proving that such semantics were consistent took cumbersome and elaborate proofs. We show that these criteria are indeed satisfied for all common semantics of logic programming. This paper is under consideration for acceptance in Theory and Practice of Logic Programming (TPLP).

Nonmonotonic Inferences with Qualitative Conditionals based on Preferred Structures on Worlds Artificial Intelligence

A conditional knowledge base R is a set of conditionals of the form "If A, the usually B". Using structural information derived from the conditionals in R, we introduce the preferred structure relation on worlds. The preferred structure relation is the core ingredient of a new inference relation called system W inference that inductively completes the knowledge given explicitly in R. We show that system W exhibits desirable inference properties like satisfying system P and avoiding, in contrast to e.g. system Z, the drowning problem. It fully captures and strictly extends both system Z and skeptical c-inference. In contrast to skeptical c-inference, it does not require to solve a complex constraint satisfaction problem, but is as tractable as system Z.