Model-Based Reasoning
Conformant Planning via Symbolic Model Checking
We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation of the search space based on Binary Decision Diagrams (BDDs), which is the basis for search techniques derived from symbolic model checking. The symbolic representation makes it possible to analyze potentially large sets of states and transitions in a single computation step, thus providing for an efficient implementation. Third, we present CMBP (Conformant Model Based Planner), an efficient implementation of the data structures and algorithm described above, directly based on BDD manipulations, which allows for a compact representation of the search layers and an efficient implementation of the search steps. Finally, we present an experimental comparison of our approach with the state-of-the-art conformant planners CGP, QBFPLAN and GPT. Our analysis includes all the planning problems from the distribution packages of these systems, plus other problems defined to stress a number of specific factors. Our approach appears to be the most effective: CMBP is strictly more expressive than QBFPLAN and CGP and, in all the problems where a comparison is possible, CMBP outperforms its competitors, sometimes by orders of magnitude.
Using Mechanism Design to Prevent False-Name Manipulations
Conitzer, Vincent (Duke University) | Yokoo, Makoto (Kyushu University)
The basic notion of false-name-proofness allows for useful mechanisms under certain circumstances, but in general there are impossibility results that show that false-name-proof mechanisms have severe limitations. One may react to these impossibility results by saying that, since false-name-proof mechanisms are unsatisfactory, we should not run any important mechanisms in highly anonymous settings--unless, perhaps, we can find some methodology that directly prevents false-name manipulation even in such settings, so that we are back in a more typical mechanism design context. Because the Internet is so attractive as a platform for running certain types of mechanisms, it seems unlikely that the organizations running these mechanisms will take them offline. As a result, perhaps the most promising approaches at this point are those that combine techniques from mechanism design with other techniques discussed in this article.
Using Mechanism Design to Prevent False-Name Manipulations
Conitzer, Vincent (Duke University) | Yokoo, Makoto (Kyushu University)
The basic notion of false-name-proofness allows for useful mechanisms under certain circumstances, but in general there are impossibility results that show that false-name-proof mechanisms have severe limitations. One may react to these impossibility results by saying that, since false-name-proof mechanisms are unsatisfactory, we should not run any important mechanisms in highly anonymous settings—unless, perhaps, we can find some methodology that directly prevents false-name manipulation even in such settings, so that we are back in a more typical mechanism design context. However, it seems unlikely that the phenomenon of false-name manipulation will disappear anytime soon. Because the Internet is so attractive as a platform for running certain types of mechanisms, it seems unlikely that the organizations running these mechanisms will take them offline. Moreover, because a goal of these organizations is often to get as many users to participate as possible, they will be reluctant to use high-overhead solutions that discourage users from participating. As a result, perhaps the most promising approaches at this point are those that combine techniques from mechanism design with other techniques discussed in this article. It appears that this is a rich domain for new, creative approaches that can have significant practical impact.
Computationally Feasible Automated Mechanism Design: General Approach and Case Studies
Guo, Mingyu (Duke University) | Conitzer, Vincent (Duke University)
In many multiagent settings, a decision must be made based on the preferences of multiple agents, and agents may lie about their preferences if this is to their benefit. In mechanism design, the goal is to design procedures (mechanisms) for making the decision that work in spite of such strategic behavior, usually by making untruthful behavior suboptimal. In automated mechanism design, the idea is to computationally search through the space of feasible mechanisms, rather than to design them analytically by hand. Unfortunately, the most straightforward approach to automated mechanism design does not scale to large instances, because it requires searching over a very large space of possible functions. In this paper, we describe an approach to automated mechanism design that is computationally feasible. Instead of optimizing over all feasible mechanisms, we carefully choose a parameterized subfamily of mechanisms. Then we optimize over mechanisms within this family, and analyze whether and to what extent the resulting mechanism is suboptimal outside the subfamily. We demonstrate the usefulness of our approach with two case studies.
The Model-Based Approach to Autonomous Behavior: A Personal View
Geffner, Hector (ICREA and Universitat Pompeu Fabra)
The selection of the action to do next is one of the central problems faced by autonomous agents. In AI, three approaches have been used to address this problem: the programming-based approach, where the agent controller is given by the programmer, the learning-based approach, where the controller is induced from experience via a learning algorithm, and the model-based approach, where the controller is derived from a model of the problem. Planning in AI is best conceived as the model-based approach to action selection. The models represent the initial situation, actions, sensors, and goals. The main challenge in planning is computational, as all the models, whether accommodating feedback and uncertainty or not, are intractable in the worst case. In this article, I review some of the models considered in current planning research, the progress achieved in solving these models, and some of the open problems.
Reconstruction of Causal Networks by Set Covering
Fyson, Nick, De Bie, Tijl, Cristianini, Nello
We present a method for the reconstruction of networks, based on the order of nodes visited by a stochastic branching process. Our algorithm reconstructs a network of minimal size that ensures consistency with the data. Crucially, we show that global consistency with the data can be achieved through purely local considerations, inferring the neighbourhood of each node in turn. The optimisation problem solved for each individual node can be reduced to a Set Covering Problem, which is known to be NP-hard but can be approximated well in practice. We then extend our approach to account for noisy data, based on the Minimum Description Length principle. We demonstrate our algorithms on synthetic data, generated by an SIR-like epidemiological model.
A survey of statistical network models
Goldenberg, Anna, Zheng, Alice X, Fienberg, Stephen E, Airoldi, Edoardo M
Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.
AWDRAT: A Cognitive Middleware System for Information Survivability
Shrobe, Howard, Laddaga, Robert, Balzer, Bob, Goldman, Neil, Wile, Dave, Tallis, Marcelo, Hollebeek, Tim, Egyed, Alexander
The infrastructure of modern society is controlled by software systems that are vulnerable to attacks. Many such attacks, launched by "recreational hackers" have already led to severe disruptions and significant cost. It, therefore, is critical that we find ways to protect such systems and to enable them to continue functioning even after a successful attack. This article describes AWDRAT, a prototype middleware system for providing survivability to both new and legacy applications. AWDRAT stands for architectural differencing, wrappers, diagnosis, recovery, adaptive software, and trust modeling. AWDRAT uses these techniques to gain visibility into the execution of an application system and to compare the application's actual behavior to that which is expected. In the case of a deviation, AWDRAT conducts a diagnosis that determines which computational resources are likely to have been compromised and then adds these assessments to its trust model. The trust model in turn guides the recovery process, particularly by guiding the system in its choice among functionally equivalent methods and resources.AWDRAT has been applied to and evaluated on an example application system, a graphical editor for constructing mission plans. We describe a series of experiments that were performed to test the effectiveness of AWDRAT in recognizing and recovering from simulated attacks, and we present data showing the effectiveness of AWDRAT in detecting a variety of compromises to the application system (approximately 90 percent of all simulated attacks are detected, diagnosed, and corrected). We also summarize some lessons learned from the AWDRAT experiments and suggest approaches for comprehensive application protection methods and techniques.
Approximately Efficient Online Mechanism Design
Parkes, David C., Yanovsky, Dimah, Singh, Satinder P.
Online mechanism design (OMD) addresses the problem of sequential decision making in a stochastic environment with multiple self-interested agents. The goal in OMD is to make value-maximizing decisions despite this self-interest. In previous work we presented a Markov decision process (MDP)-basedapproach to OMD in large-scale problem domains. In practice the underlying MDP needed to solve OMD is too large and hence the mechanism must consider approximations. This raises the possibility thatagents may be able to exploit the approximation for selfish gain. We adopt sparse-sampling-based MDP algorithms to implement ɛ- efficient policies, and retain truth-revelation as an approximate Bayesian-Nash equilibrium. Our approach is empirically illustrated in the context of the dynamic allocation of WiFi connectivity to users in a coffeehouse.
An MDP-Based Approach to Online Mechanism Design
Parkes, David C., Singh, Satinder P.
Online mechanism design (MD) considers the problem of providing incentives to implement desired system-wide outcomes in systems with self-interested agents that arrive and depart dynamically. Agents can choose to misrepresent their arrival and departure times, in addition to information about their value for different outcomes. We consider the problem of maximizing the total longterm value of the system despite the self-interest of agents. The online MD problem induces a Markov Decision Process (MDP), which when solved can be used to implement optimal policies in a truth-revealing Bayesian-Nash equilibrium.