Model-Based Reasoning
Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias
Forré, Patrick, Mooij, Joris M.
We prove the main rules of causal calculus (also called do-calculus) for interventional structural causal models (iSCMs), a generalization of a recently proposed general class of non-/linear structural causal models that allow for cycles, latent confounders and arbitrary probability distributions. We also generalize adjustment criteria and formulas from the acyclic setting to the general one (i.e. iSCMs). Such criteria then allow to estimate (conditional) causal effects from observational data that was (partially) gathered under selection bias and cycles. This generalizes the backdoor criterion, the selection-backdoor criterion and extensions of these to arbitrary iSCMs. Together, our results thus enable causal reasoning in the presence of cycles, latent confounders and selection bias.
Mechanism Design for Social Good
Across various domains--such as health, education, and housing--improving societal welfare involves allocating resources, setting policies, targeting interventions, and regulating activities. These solutions have an immense impact on the day-to-day lives of individuals, whether in the form of access to quality healthcare, labor market outcomes, or how votes are accounted for in a democratic society. Problems that can have an out-sized impact on individuals whose opportunities have historically been limited often pose conceptual and technical challenges, requiring insights from many disciplines. Conversely, the lack of interdisciplinary approach can leave these urgent needs unaddressed and can even exacerbate underlying socioeconomic inequalities. To realize the opportunities in these domains, we need to correctly set objectives and reason about human behavior and actions. Doing so requires a deep grounding in the field of interest and collaboration with domain experts who understand the societal implications and feasibility of proposed solutions. These insights can play an instrumental role in proposing algorithmically-informed policies. In this article, we describe the Mechanism Design for Social Good (MD4SG) research agenda, which involves using insights from algorithms, optimization, and mechanism design to improve access to opportunity. The MD4SG research community takes an interdisciplinary, multi-stakeholder approach to improve societal welfare. We discuss three exciting research avenues within MD4SG related to improving access to opportunity in the developing world, labor markets and discrimination, and housing. For each of these, we showcase ongoing work, underline new directions, and discuss potential for implementing existing work in practice.
Learning Embeddings of Directed Networks with Text-Associated Nodes---with Applications in Software Package Dependency Networks
A network embedding consists of a vector representation for each node in the network. Network embeddings have shown their usefulness in node classification and visualization in many real-world application domains, such as social networks and web networks. While directed networks with text associated with each node, such as citation networks and software package dependency networks, are commonplace, to the best of our knowledge, their embeddings have not been specifically studied. In this paper, we create PCTADW-1 and PCTADW-2, two algorithms based on NNs that learn embeddings of directed networks with text associated with each node. We create two new labeled directed networks with text-associated node: The package dependency networks in two popular GNU/Linux distributions, Debian and Fedora. We experimentally demonstrate that the embeddings produced by our NNs resulted in node classification with better quality than those of various baselines on these two networks. We observe that there exist systematic presence of analogies (similar to those in word embeddings) in the network embeddings of software package dependency networks. To the best of our knowledge, this is the first time that such a systematic presence of analogies is observed in network and document embeddings. This may potentially open up a new venue for better understanding networks and documents algorithmically using their embeddings as well as for better human understanding of network and document embeddings.
Bridging Knowledge Gaps in Neural Entailment via Symbolic Models
Kang, Dongyeop, Khot, Tushar, Sabharwal, Ashish, Clark, Peter
Most textual entailment models focus on lexical gaps between the premise text and the hypothesis, but rarely on knowledge gaps. We focus on filling these knowledge gaps in the Science Entailment task, by leveraging an external structured knowledge base (KB) of science facts. Our new architecture combines standard neural entailment models with a knowledge lookup module. To facilitate this lookup, we propose a fact-level decomposition of the hypothesis, and verifying the resulting sub-facts against both the textual premise and the structured KB. Our model, NSnet, learns to aggregate predictions from these heterogeneous data formats. On the SciTail dataset, NSnet outperforms a simpler combination of the two predictions by 3% and the base entailment model by 5%.
CERN Project Sees Orders-of-Magnitude Speedup with AI Approach
An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learning. The CERN team demonstrated that AI-based models have the potential to act as orders-of-magnitude-faster replacements for computationally expensive tasks in simulation, while maintaining a remarkable level of accuracy. Dr. Federico Carminati (Project Coordinator, CERN) points out, "This work demonstrates the potential of'black box' machine-learning models in physics-based simulations." A poster describing this work was awarded the prize for best poster in the category'programming models and systems software' at ISC'18. This recognizes the importance of the work, which was carried out by Dr. Federico Carminati, Gul Rukh Khattak, and Dr. Sofia Vallecorsa at CERN, as well as Jean-Roch Vlimant at Caltech.
The Power of Verification for Greedy Mechanism Design
Fotakis, Dimitris, Krysta, Piotr, Ventre, Carmine
Greedy algorithms are known to provide, in polynomial time, near optimal approximation guarantees for Combinatorial Auctions (CAs) with multidimensional bidders. It is known that truthful greedy-like mechanisms for CAs with multi-minded bidders do not achieve good approximation guarantees. In this work, we seek a deeper understanding of greedy mechanism design and investigate under which general assumptions, we can have efficient and truthful greedy mechanisms for CAs. Towards this goal, we use the framework of priority algorithms and weak and strong verification, where the bidders are not allowed to overbid on their winning set or on any subset of this set, respectively. We provide a complete characterization of the power of weak verification showing that it is sufficient and necessary for any greedy fixed priority algorithm to become truthful with the use of money or not, depending on the ordering of the bids. Moreover, we show that strong verification is sufficient and necessary to obtain a 2-approximate truthful mechanism with money, based on a known greedy algorithm, for the problem of submodular CAs in finite bidding domains. Our proof is based on an interesting structural analysis of the strongly connected components of the declaration graph.
Combining Model-Free Q-Ensembles and Model-Based Approaches for Informed Exploration
Sankaranarayanan, Sreecharan, Annasamy, Raghuram Mandyam, Sycara, Katia, Rosé, Carolyn Penstein
Q-Ensembles are a model-free approach where input images are fed into different Q-networks and exploration is driven by the assumption that uncertainty is proportional to the variance of the output Q-values obtained. They have been shown to perform relatively well compared to other exploration strategies. Further, model-based approaches, such as encoder-decoder models have been used successfully for next frame prediction given previous frames. This paper proposes to integrate the model-free Q-ensembles and model-based approaches with the hope of compounding the benefits of both and achieving superior exploration as a result. Results show that a model-based trajectory memory approach when combined with Q-ensembles produces superior performance when compared to only using Q-ensembles.
Causal Reasoning for Algorithmic Fairness
Loftus, Joshua R., Russell, Chris, Kusner, Matt J., Silva, Ricardo
In this work, we argue for the importance of causal reasoning in creating fair algorithms for decision making. We give a review of existing approaches to fairness, describe work in causality necessary for the understanding of causal approaches, argue why causality is necessary for any approach that wishes to be fair, and give a detailed analysis of the many recent approaches to causality-based fairness.
Galleria of Art.com: on Zazzle
See all results for "" Add photos and text with our easily customizable templates. Add a wedding, baby, or holiday card photo to custom U.S. postage! From your head to your toes, find apparel that fits your unique sense of style. Home is Where the Heart is. Add a special touch to your next event with custom craft and party supplies!