Goto

Collaborating Authors

 Mathematical & Statistical Methods


Learning Erdล‘s-Rรฉnyi Random Graphs via Edge Detecting Queries Zihan Li

Neural Information Processing Systems

In this paper, we consider the problem of learning an unknown graph via queries on groups of nodes, with the result indicating whether or not at least one edge is present among those nodes.


Optimal Learning for Multi-pass Stochastic Gradient Methods

Neural Information Processing Systems

We analyze the learning properties of the stochastic gradient method when multiple passes over the data and mini-batches are allowed. In particular, we consider the square loss and show that for a universal step-size choice, the number of passes acts as a regularization parameter, and optimal finite sample bounds can be achieved by early-stopping. Moreover, we show that larger step-sizes are allowed when considering mini-batches. Our analysis is based on a unifying approach, encompassing both batch and stochastic gradient methods as special cases.


Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs

Neural Information Processing Systems

We define and study the problem of predicting the solution to a linear program (LP) given only partial information about its objective and constraints. This generalizes the problem of learning to predict the purchasing behavior of a rational agent who has an unknown objective function, that has been studied under the name "Learning from Revealed Preferences". We give mistake bound learning algorithms in two settings: in the first, the objective of the LP is known to the learner but there is an arbitrary, fixed set of constraints which are unknown. Each example is defined by an additional known constraint and the goal of the learner is to predict the optimal solution of the LP given the union of the known and unknown constraints. This models the problem of predicting the behavior of a rational agent whose goals are known, but whose resources are unknown.


Interpretable Nonlinear Dynamic Modeling of Neural Trajectories

Neural Information Processing Systems

A central challenge in neuroscience is understanding how neural system implements computation through its dynamics. We propose a nonlinear time series model aimed at characterizing interpretable dynamics from neural trajectories. Our model assumes low-dimensional continuous dynamics in a finite volume. It incorporates a prior assumption about globally contractional dynamics to avoid overly enthusiastic extrapolation outside of the support of observed trajectories. We show that our model can recover qualitative features of the phase portrait such as attractors, slow points, and bifurcations, while also producing reliable long-term future predictions in a variety of dynamical models and in real neural data.


Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy

Neural Information Processing Systems

We consider empirical risk minimization for large-scale datasets. We introduce Ada Newton as an adaptive algorithm that uses Newton's method with adaptive sample sizes. The main idea of Ada Newton is to increase the size of the training set by a factor larger than one in a way that the minimization variable for the current training set is in the local neighborhood of the optimal argument of the next training set. This allows to exploit the quadratic convergence property of Newton's method and reach the statistical accuracy of each training set with only one iteration of Newton's method. We show theoretically that we can iteratively increase the sample size while applying single Newton iterations without line search and staying within the statistical accuracy of the regularized empirical risk.


Variance Reduction in Stochastic Gradient Langevin Dynamics

Neural Information Processing Systems

Stochastic gradient-based Monte Carlo methods such as stochastic gradient Langevin dynamics are useful tools for posterior inference on large scale datasets in many machine learning applications. These methods scale to large datasets by using noisy gradients calculated using a mini-batch or subset of the dataset. However, the high variance inherent in these noisy gradients degrades performance and leads to slower mixing. In this paper, we present techniques for reducing variance in stochastic gradient Langevin dynamics, yielding novel stochastic Monte Carlo methods that improve performance by reducing the variance in the stochastic gradient. We show that our proposed method has better theoretical guarantees on convergence rate than stochastic Langevin dynamics. This is complemented by impressive empirical results obtained on a variety of real world datasets, and on four different machine learning tasks (regression, classification, independent component analysis and mixture modeling).


Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters

Neural Information Processing Systems

The amount of data available in the world is growing faster than our ability to deal with it. However, if we take advantage of the internal structure, data may become much smaller for machine learning purposes. In this paper we focus on one of the fundamental machine learning tasks, empirical risk minimization (ERM), and provide faster algorithms with the help from the clustering structure of the data. We introduce a simple notion of raw clustering that can be efficiently computed from the data, and propose two algorithms based on clustering information. Our accelerated algorithm ClusterACDM is built on a novel Haar transformation applied to the dual space of the ERM problem, and our variance-reduction based algorithm ClusterSVRG introduces a new gradient estimator using clustering. Our algorithms outperform their classical counterparts ACDM and SVRG respectively.


Factoring nonnegative matrices with linear programs

Neural Information Processing Systems

This paper describes a new approach, based on linear programming, for computing nonnegative matrix factorizations (NMFs). The key idea is a data-driven model for the factorization where the most salient features in the data are used to express the remaining features. More precisely, given a data matrix X, the algorithm identifies a matrix C that satisfies X CX and some linear constraints. The constraints are chosen to ensure that the matrix C selects features; these features can then be used to find a low-rank NMF of X. A theoretical analysis demonstrates that this approach has guarantees similar to those of the recent NMF algorithm of Arora et al. (2012). In contrast with this earlier work, the proposed method extends to more general noise models and leads to efficient, scalable algorithms. Experiments with synthetic and real datasets provide evidence that the new approach is also superior in practice. An optimized C++ implementation can factor a multigigabyte matrix in a matter of minutes.



Finite Population Regression Adjustment and Non-asymptotic Guarantees for Treatment Effect Estimation

Neural Information Processing Systems

The design and analysis of randomized experiments is fundamental to many areas, from the physical and social sciences to industrial settings. Regression adjustment is a popular technique to reduce the variance of estimates obtained from experiments, by utilizing information contained in auxiliary covariates. While there is a large literature within the statistics community studying various approaches to regression adjustment and their asymptotic properties, little focus has been given to approaches in the finite population setting with non-asymptotic accuracy bounds. Further, prior work typically assumes that an entire population is exposed to an experiment, whereas practitioners often seek to minimize the number of subjects exposed to an experiment, for ethical and pragmatic reasons. In this work, we study the problems of estimating the sample mean, individual treatment effects, and average treatment effect with regression adjustment. We propose approaches that use techniques from randomized numerical linear algebra to sample a subset of the population on which to perform an experiment. We give non-asymptotic accuracy bounds for our methods and demonstrate that they compare favorably with prior approaches.