Logic & Formal Reasoning


Logical Rule Induction and Theory Learning Using Neural Theorem Proving

arXiv.org Artificial Intelligence

A hallmark of human cognition is the ability to continually acquire and distill observations of the world into meaningful, predictive theories. In this paper we present a new mechanism for logical theory acquisition which takes a set of observed facts and learns to extract from them a set of logical rules and a small set of core facts which together entail the observations. Our approach is neuro-symbolic in the sense that the rule pred- icates and core facts are given dense vector representations. The rules are applied to the core facts using a soft unification procedure to infer additional facts. After k steps of forward inference, the consequences are compared to the initial observations and the rules and core facts are then encouraged towards representations that more faithfully generate the observations through inference. Our approach is based on a novel neural forward-chaining differentiable rule induction network. The rules are interpretable and learned compositionally from their predicates, which may be invented. We demonstrate the efficacy of our approach on a variety of ILP rule induction and domain theory learning datasets.


Non-monotonic Reasoning in Deductive Argumentation

arXiv.org Artificial Intelligence

Argumentation is a non-monotonic process. This reflects the fact that argumentation involves uncertain information, and so new information can cause a change in the conclusions drawn. However, the base logic does not need to be non-monotonic. Indeed, most proposals for structured argumentation use a monotonic base logic (e.g. some form of modus ponens with a rule-based language, or classical logic). Nonetheless, there are issues in capturing defeasible reasoning in argumentation including choice of base logic and modelling of defeasible knowledge. And there are insights and tools to be harnessed for research in non-monontonic logics. We consider some of these issues in this paper.


Finite LTL Synthesis with Environment Assumptions and Quality Measures

arXiv.org Artificial Intelligence

In this paper, we investigate the problem of synthesizing strategies for linear temporal logic (LTL) specifications that are interpreted over finite traces -- a problem that is central to the automated construction of controllers, robot programs, and business processes. We study a natural variant of the finite LTL synthesis problem in which strategy guarantees are predicated on specified environment behavior. We further explore a quantitative extension of LTL that supports specification of quality measures, utilizing it to synthesize high-quality strategies. We propose new notions of optimality and associated algorithms that yield strategies that best satisfy specified quality measures. Our algorithms utilize an automata-game approach, positioning them well for future implementation via existing state-of-the-art techniques.


Rule-based OWL Modeling with ROWLTab Protege Plugin

arXiv.org Artificial Intelligence

It has been argued that it is much easier to convey logical statements using rules rather than OWL (or description logic (DL)) axioms. Based on recent theoretical developments on transformations between rules and DLs, we have developed ROWLTab, a Protege plugin that allows users to enter OWL axioms by way of rules; the plugin then automatically converts these rules into OWL 2 DL axioms if possible, and prompts the user in case such a conversion is not possible without weakening the semantics of the rule. In this paper, we present ROWLTab, together with a user evaluation of its effectiveness compared to entering axioms using the standard Protege interface. Our evaluation shows that modeling with ROWLTab is much quicker than the standard interface, while at the same time, also less prone to errors for hard modeling tasks.


Foundations of Probabilistic Logic Programming

#artificialintelligence

Probabilistic Logic Programming extends Logic Programming by enabling the representation of uncertain information. Probabilistic Logic Programming is at the intersection of two wider research fields: the integration of logic and probability and Probabilistic Programming. Logic enables the representation of complex relations among entities while probability theory is useful for model uncertainty over attributes and relations. Combining the two is a very active field of study. Probabilistic Programming extends programming languages with probabilistic primitives that can be used to write complex probabilistic models.


Hybrid ASP-based Approach to Pattern Mining

arXiv.org Artificial Intelligence

Detecting small sets of relevant patterns from a given dataset is a central challenge in data mining. The relevance of a pattern is based on user-provided criteria; typically, all patterns that satisfy certain criteria are considered relevant. Rule-based languages like Answer Set Programming (ASP) seem well-suited for specifying such criteria in a form of constraints. Although progress has been made, on the one hand, on solving individual mining problems and, on the other hand, developing generic mining systems, the existing methods either focus on scalability or on generality. In this paper we make steps towards combining local (frequency, size, cost) and global (various condensed representations like maximal, closed, skyline) constraints in a generic and efficient way. We present a hybrid approach for itemset, sequence and graph mining which exploits dedicated highly optimized mining systems to detect frequent patterns and then filters the results using declarative ASP. To further demonstrate the generic nature of our hybrid framework we apply it to a problem of approximately tiling a database. Experiments on real-world datasets show the effectiveness of the proposed method and computational gains for itemset, sequence and graph mining, as well as approximate tiling. Under consideration in Theory and Practice of Logic Programming (TPLP).


Sketched Answer Set Programming

arXiv.org Artificial Intelligence

Answer Set Programming (ASP) is a powerful modeling formalism for combinatorial problems. However, writing ASP models is not trivial. We propose a novel method, called Sketched Answer Set Programming (SkASP), aiming at supporting the user in resolving this issue. The user writes an ASP program while marking uncertain parts open with question marks. In addition, the user provides a number of positive and negative examples of the desired program behaviour. The sketched model is rewritten into another ASP program, which is solved by traditional methods. As a result, the user obtains a functional and reusable ASP program modelling her problem. We evaluate our approach on 21 well known puzzles and combinatorial problems inspired by Karp's 21 NP-complete problems and demonstrate a use-case for a database application based on ASP.


Vicious Circle Principle and Logic Programs with Aggregates

arXiv.org Artificial Intelligence

The paper presents a knowledge representation language $\mathcal{A}log$ which extends ASP with aggregates. The goal is to have a language based on simple syntax and clear intuitive and mathematical semantics. We give some properties of $\mathcal{A}log$, an algorithm for computing its answer sets, and comparison with other approaches.


Stream Reasoning on Expressive Logics

arXiv.org Artificial Intelligence

Data streams occur widely in various real world applications. The research on streaming data mainly focuses on the data management, query evaluation and optimization on these data, however the work on reasoning procedures for streaming knowledge bases on both the assertional and terminological levels is very limited. Typically reasoning services on large knowledge bases are very expensive, and need to be applied continuously when the data is received as a stream. Hence new techniques for optimizing this continuous process is needed for developing efficient reasoners on streaming data. In this paper, we survey the related research on reasoning on expressive logics that can be applied to this setting, and point to further research directions in this area.


Weight Learning in a Probabilistic Extension of Answer Set Programs

arXiv.org Artificial Intelligence

LPMLN is a probabilistic extension of answer set programs with the weight scheme derived from that of Markov Logic. Previous work has shown how inference in LPMLN can be achieved. In this paper, we present the concept of weight learning in LPMLN and learning algorithms for LPMLN derived from those for Markov Logic. We also present a prototype implementation that uses answer set solvers for learning as well as some example domains that illustrate distinct features of LPMLN learning. Learning in LPMLN is in accordance with the stable model semantics, thereby it learns parameters for probabilistic extensions of knowledge-rich domains where answer set programming has shown to be useful but limited to the deterministic case, such as reachability analysis and reasoning about actions in dynamic domains. We also apply the method to learn the parameters for probabilistic abductive reasoning about actions.