Goto

Collaborating Authors

 Description Logic


Botoeva

AAAI Conferences

Deciding inseparability of description logic knowledge bases (KBs) with respect to conjunctive queries is fundamental for many KB engineering and maintenance tasks including versioning, module extraction, knowledge exchange and forgetting. We study the combined and data complexity of this inseparability problem for fragments of Horn-ALCHI, including the description logics underpinning OWL 2 QL and OWL 2 EL.


Calvanese

AAAI Conferences

We study the data complexity of answering conjunctive queries over Description Logic knowledge bases constituted by a TBox and an ABox. In particular, we are interested in characterizing the FO- rewritability and the polynomial tractability boundaries of conjunctive query answering, depending on the expressive power of the DL used to express the knowledge base. What emerges from our complexity analysis is that the Description Logics of the DL-Lite family are essentially the maximal logics allowing for conjunctive query answering through standard database technology.


ZarrieรŸ

AAAI Conferences

A knowledge-based program defines the behavior of an agent by combining primitive actions, programming constructs and test conditions that make explicit reference to the agent's knowledge. In this paper we consider a setting where an agent is equipped with a Description Logic (DL) knowledge base providing general domain knowledge and an incomplete description of the initial situation. We introduce a corresponding new DL-based action language that allows for representing both physical and sensing actions, and that we then use to build knowledge-based programs with test conditions expressed in the epistemic DL. After proving undecidability for the general case, we then discuss a restricted fragment where verification becomes decidable. The provided proof is constructive and comes with an upper bound on the procedure's complexity.


Kaminski

AAAI Conferences

Description Logic (DL) based ontologies and non-monotonic rules provide complementary features whose combination is crucial in many applications. In hybrid knowledge bases (KBs), which combine both formalisms, for large real-world applications, often integrating knowledge originating from different sources, inconsistencies can easily occur. These commonly trivialize standard reasoning and prevent us from drawing any meaningful conclusions. When restoring consistency by changing the KB is not possible, paraconsistent reasoning offers an alternative by allowing us to obtain meaningful conclusions from its consistent part. In this paper, we address the problem of efficiently obtaining meaningful conclusions from (possibly inconsistent) hybrid KBs. To this end, we define two paraconsistent semantics for hybrid KBs which, beyond their differentiating properties, are faithful to well-known paraconsistent semantics as well as the non-paraconsistent logic they extend, and tractable if reasoning in the DL component is.


Hernich

AAAI Conferences

Schema.org is an initiative by the major search engine providers Bing, Google, Yahoo, and Yandex that provides a collection of ontologies which webmasters can use to mark up their pages.


Baget

AAAI Conferences

We consider existential rules (aka Datalog /-) as a formalism for specifying ontologies. In recent years, many classes of existential rules have been exhibited for which conjunctive query (CQ) entailment is decidable. However, most of these classes cannot express transitivity of binary relations, a frequently used modelling construct. In this paper, we address the issue of whether transitivity can be safely combined with decidable classes of existential rules. First, we prove that transitivity is incompatible with one of the simplest decidable classes, namely aGRD (acyclic graph of rule dependencies), which clarifies the landscape of'finite expansion sets' of rules. Second, we show that transitivity can be safely added to linear rules (a subclass of guarded rules, which generalizes the description logic DL-LiteR) in the case of atomic CQs, and also for general CQs if we place a minor syntactic restriction on the rule set. This is shown by means of a novel query rewriting algorithm that is specially tailored to handle transitivity rules. Third, for the identified decidable cases, we pinpoint the combined and data complexities of query entailment.


Aleatoric Description Logic for Probailistic Reasoning (Long Version)

arXiv.org Artificial Intelligence

Description logics are a powerful tool for describing ontological knowledge bases. That is, they give a factual account of the world in terms of individuals, concepts and relations. In the presence of uncertainty, such factual accounts are not feasible, and a subjective or epistemic approach is required. Aleatoric description logic models uncertainty in the world as aleatoric events, by the roll of the dice, where an agent has subjective beliefs about the bias of these dice. This provides a subjective Bayesian description logic, where propositions and relations are assigned probabilities according to what a rational agent would bet, given a configuration of possible individuals and dice. Aleatoric description logic is shown to generalise the description logic ALC, and can be seen to describe a probability space of interpretations of a restriction of ALC where all roles are functions. Several computational problems are considered and model-checking and consistency checking algorithms are presented. Finally, aleatoric description logic is shown to be able to model learning, where agents are able to condition their beliefs on the bias of dice according to observations.


Cleaning Inconsistent Data in Temporal DL-Lite Under Best Repair Semantics

arXiv.org Artificial Intelligence

In this paper, we address the problem of handling inconsistent data in Temporal Description Logic (TDL) knowledge bases. Considering the data part of the knowledge base as the source of inconsistency over time, we propose an ABox repair approach. This is the first work handling the repair in TDL Knowledge bases. To do so, our goal is twofold: 1) detect temporal inconsistencies and 2) propose a data temporal reparation. For the inconsistency detection, we propose a reduction approach from TDL to DL which allows to provide a tight NP-complete upper bound for TDL concept satisfiability and to use highly optimised DL reasoners that can bring precise explanation (the set of inconsistent data assertions). Thereafter, from the obtained explanation, we propose a method for automatically computing the best repair in the temporal setting based on the allowed rigid predicates and the time order of assertions.


Geometric Models for (Temporally) Attributed Description Logics

arXiv.org Artificial Intelligence

In the search for knowledge graph embeddings that could capture ontological knowledge, geometric models of existential rules have been recently introduced. It has been shown that convex geometric regions capture the so-called quasi-chained rules. Attributed description logics (DL) have been defined to bridge the gap between DL languages and knowledge graphs, whose facts often come with various kinds of annotations that may need to be taken into account for reasoning. In particular, temporally attributed DLs are enriched by specific attributes whose semantics allows for some temporal reasoning. Considering that geometric models and (temporally) attributed DLs are promising tools designed for knowledge graphs, this paper investigates their compatibility, focusing on the attributed version of a Horn dialect of the DL-Lite family. We first adapt the definition of geometric models to attributed DLs and show that every satisfiable ontology has a convex geometric model. Our second contribution is a study of the impact of temporal attributes. We show that a temporally attributed DL may not have a convex geometric model in general but we can recover geometric satisfiability by imposing some restrictions on the use of the temporal attributes.


SMT-Based Safety Verification of Data-Aware Processes under Ontologies (Extended Version)

arXiv.org Artificial Intelligence

In the context of verification of data-aware processes (DAPs), a formal approach based on satisfiability modulo theories (SMT) has been considered to verify parameterised safety properties of so-called artifact-centric systems. This approach requires a combination of model-theoretic notions and algorithmic techniques based on backward reachability. We introduce here a variant of one of the most investigated models in this spectrum, namely simple artifact systems (SASs), where, instead of managing a database, we operate over a description logic (DL) ontology expressed in (a slight extension of) RDFS. This DL, enjoying suitable model-theoretic properties, allows us to define DL-based SASs to which backward reachability can still be applied, leading to decidability in PSPACE of the corresponding safety problems.