Goto

Collaborating Authors

 Description Logic


Minimizing Fuzzy Interpretations in Fuzzy Description Logics by Using Crisp Bisimulations

arXiv.org Artificial Intelligence

The problem of minimizing finite fuzzy interpretations in fuzzy description logics (FDLs) is worth studying. For example, the structure of a fuzzy/weighted social network can be treated as a fuzzy interpretation in FDLs, where actors are individuals and actions are roles. Minimizing the structure of a fuzzy/weighted social network makes it more compact, thus making network analysis tasks more efficient. In this work, we study the problem of minimizing a finite fuzzy interpretation in a FDL by using the largest crisp auto-bisimulation. The considered FDLs use the Baaz projection operator and their semantics is specified using an abstract algebra of fuzzy truth values, which can be any linear and complete residuated lattice. We provide an efficient algorithm with a complexity of $O((m \log{l} + n) \log{n})$ for minimizing a given finite fuzzy interpretation $\mathcal{I}$, where $n$ is the size of the domain of $\mathcal{I}$, $m$ is number of nonzero instances of atomic roles of $\mathcal{I}$ and $l$ is the number of different fuzzy values used for instances of atomic roles of $\mathcal{I}$. We prove that the fuzzy interpretation returned by the algorithm is minimal among the ones that preserve fuzzy TBoxes and ABoxes under certain conditions.


Learning Permutation-Invariant Embeddings for Description Logic Concepts

arXiv.org Artificial Intelligence

Concept learning deals with learning description logic concepts from a background knowledge and input examples. The goal is to learn a concept that covers all positive examples, while not covering any negative examples. This non-trivial task is often formulated as a search problem within an infinite quasi-ordered concept space. Although state-of-the-art models have been successfully applied to tackle this problem, their large-scale applications have been severely hindered due to their excessive exploration incurring impractical runtimes. Here, we propose a remedy for this limitation. We reformulate the learning problem as a multi-label classification problem and propose a neural embedding model (NERO) that learns permutation-invariant embeddings for sets of examples tailored towards predicting $F_1$ scores of pre-selected description logic concepts. By ranking such concepts in descending order of predicted scores, a possible goal concept can be detected within few retrieval operations, i.e., no excessive exploration. Importantly, top-ranked concepts can be used to start the search procedure of state-of-the-art symbolic models in multiple advantageous regions of a concept space, rather than starting it in the most general concept $\top$. Our experiments on 5 benchmark datasets with 770 learning problems firmly suggest that NERO significantly (p-value <1%) outperforms the state-of-the-art models in terms of $F_1$ score, the number of explored concepts, and the total runtime. We provide an open-source implementation of our approach.


Arenas

AAAI Conferences

In this paper, we study the problem of exchanging knowledge between a source and a target knowledge base (KB), connected through mappings. Differently from the traditional database exchange setting, which considers only the exchange of data, we are interested in exchanging implicit knowledge. As representation formalism we use Description Logics (DLs), thus assuming that the source and target KBs are given as a DL TBox ABox, while the mappings have the form of DL TBox assertions. We study the problem of translating the knowledge in the source KB according to these mappings. We define a general framework of KB exchange, and address the problems of representing implicit source information in the target, and of computing different kinds of solutions, i.e., target KBs with specified properties, given a source KB and a mapping.


Bienvenu

AAAI Conferences

While query answering in the presence of description logic (DL) ontologies is a well-studied problem, questions of static analysis such as query containment and query optimization have received less attention. In this paper, we study a rather general version of query containment that, unlike the classical version, cannot be reduced to query answering. First, we allow a restriction to be placed on the vocabulary used in the instance data, which can result in shorter equivalent queries; and second, we allow each query its own ontology rather than assuming a single ontology for both queries, which is crucial in applications to versioning and modularity. We also study global minimization of queries in the presence of DL ontologies, which is more subtle than for classical databases as minimal queries need not be isomorphic.


Ecke

AAAI Conferences

In Description Logic (DL) knowledge bases (KBs) information is typically captured by crisp concepts. For many applications, querying the KB by crisp query concepts is too restrictive. A controlled way of gradually relaxing a query concept can be achieved by the use of concept similarity measures. In this paper we formalize the task of instance query answering for crisp DL KBs using concepts relaxed by concept similarity measures. We investigate computation algorithms for this task in the DL EL, their complexity and properties for the employed similarity measure regarding whether unfoldable or general TBoxes are used.


Botoeva

AAAI Conferences

We investigate conjunctive query inseparability of description logic (DL) knowledge bases (KBs) with respect to a given signature, a fundamental problem for KB versioning, module extraction, forgetting and knowledge exchange. We study the data and combined complexity of deciding KB query inseparability for fragments of Horn-ALCHI, including the DLs underpinning OWL 2 QL and OWL 2 EL. While all of these DLs are P-complete for data complexity, the combined complexity ranges from P to EXPTIME and 2EXPTIME. We also resolve two major open problems for OWL 2 QL by showing that TBox query inseparability and the membership problem for universal UCQ-solutions in knowledge exchange are both EXPTIME-complete for combined complexity.


Kubincová

AAAI Conferences

We investigate a higher-order extension of the description logic (DL) SROIQ that provides a fixedly interpreted role semantically coupled with instantiation. It is useful to express interesting meta-level constraints on the modelled ontology. We provide a model-theoretic characterization of the semantics, and we show the decidability by means of reduction.


Ngo

AAAI Conferences

Some applications of Description Logic (DL) ontologies combine complete information (e.g., stemming from relational databases) with incomplete, open-world knowledge. Several research efforts in the last years have advocated closed predicates, which are predicates whose extension is interpreted as complete, as a suitable way to leverage partial completeness within the standard open-world semantics of DLs. These works have also studied the data complexity of query answering in the presence of closed predicates, which is generally intractable. In this paper we contribute to the understanding the combined complexity of the problem, by establishing tight complexity results for a range of DLs and query answering problems. In summary, our results show that consistency testing and instance query answering in the presence of closed predicates are feasible in NP even for rich dialects of the DL-Lite family; this is the lowest complexity that could be expected. For EL, in contrast, they are EXPTIME-complete, thus as hard as for ALC and some of its extensions.


Riguzzi

AAAI Conferences

Modeling real world domains requires ever more frequently to represent uncertain information. The DISPONTE semantics for probabilistic description logics allows to annotate axioms of a knowledge base with a value that represents their probability. In this paper we discuss approaches for performing inference from probabilistic ontologies following the DISPONTE semantics. We present the algorithm BUNDLE for computing the probability of queries. BUNDLE exploits an underlying Description Logic reasoner, such as Pellet, in order to find explanations for a query. These are then encoded in a Binary Decision Diagram that is used for computing the probability of the query.


Calvanese

AAAI Conferences

In this paper, we overview the recently introduced general framework of Description Logic Based Dynamic Systems, which leverages Levesque's functional approach to model systems that evolve the extensional part of a description logic knowledge base by means of actions. This framework is parametric w.r.t. the adopted description logic and the progression mechanism. In this setting, we discuss verification and adversarial synthesis for specifications expressed in a variant of first-order mu-calculus, with a controlled form of quantification across successive states, and present key decidability results under the natural assumption of state-boundedness.