Goto

Collaborating Authors

 Description Logic


Description Logics Go Second-Order -- Extending EL with Universally Quantified Concepts

arXiv.org Artificial Intelligence

The study of Description Logics have been historically mostly focused on features that can be translated to decidable fragments of first-order logic. In this paper, we leave this restriction behind and look for useful and decidable extensions outside first-order logic. We introduce universally quantified concepts, which take the form of variables that can be replaced with arbitrary concepts, and define two semantics of this extension. A schema semantics allows replacements of concept variables only by concepts from a particular language, giving us axiom schemata similar to modal logics. A second-order semantics allows replacement of concept variables with arbitrary subsets of the domain, which is similar to quantified predicates in second-order logic. To study the proposed semantics, we focus on the extension of the description logic $\mathcal{EL}$. We show that for a useful fragment of the extension, the conclusions entailed by the different semantics coincide, allowing us to use classical $\mathcal{EL}$ reasoning algorithms even for the second-order semantics. For a slightly smaller, but still useful, fragment, we were also able to show polynomial decidability of the extension. This fragment, in particular, can express a generalized form of role chain axioms, positive self restrictions, and some forms of (local) role-value-maps from KL-ONE, without requiring any additional constructors.


Box$^2$EL: Concept and Role Box Embeddings for the Description Logic EL++

arXiv.org Artificial Intelligence

Description logic (DL) ontologies extend knowledge graphs (KGs) with conceptual information and logical background knowledge. In recent years, there has been growing interest in inductive reasoning techniques for such ontologies, which promise to complement classical deductive reasoning algorithms. Similar to KG completion, several existing approaches learn ontology embeddings in a latent space, while additionally ensuring that they faithfully capture the logical semantics of the underlying DL. However, they suffer from several shortcomings, mainly due to a limiting role representation. We propose Box$^2$EL, which represents both concepts and roles as boxes (i.e., axis-aligned hyperrectangles) and demonstrate how it overcomes the limitations of previous methods. We theoretically prove the soundness of our model and conduct an extensive experimental evaluation, achieving state-of-the-art results across a variety of datasets. As part of our evaluation, we introduce a novel benchmark for subsumption prediction involving both atomic and complex concepts.


Neuro-Symbolic RDF and Description Logic Reasoners: The State-Of-The-Art and Challenges

arXiv.org Artificial Intelligence

Ontologies are used in various domains, with RDF and OWL being prominent standards for ontology development. RDF is favored for its simplicity and flexibility, while OWL enables detailed domain knowledge representation. However, as ontologies grow larger and more expressive, reasoning complexity increases, and traditional reasoners struggle to perform efficiently. Despite optimization efforts, scalability remains an issue. Additionally, advancements in automated knowledge base construction have created large and expressive ontologies that are often noisy and inconsistent, posing further challenges for conventional reasoners. To address these challenges, researchers have explored neuro-symbolic approaches that combine neural networks' learning capabilities with symbolic systems' reasoning abilities. In this chapter,we provide an overview of the existing literature in the field of neuro-symbolic deductive reasoning supported by RDF(S), the description logics EL and ALC, and OWL 2 RL, discussing the techniques employed, the tasks they address, and other relevant efforts in this area.


Optimal Alignment of Temporal Knowledge Bases

arXiv.org Artificial Intelligence

Answering temporal CQs over temporalized Description Logic knowledge bases (TKB) is a main technique to realize ontology-based situation recognition. In case the collected data in such a knowledge base is inaccurate, important query answers can be missed. In this paper we introduce the TKB Alignment problem, which computes a variant of the TKB that minimally changes the TKB, but entails the given temporal CQ and is in that sense (cost-)optimal. We investigate this problem for ALC TKBs and conjunctive queries with LTL operators and devise a solution technique to compute (cost-optimal) alignments of TKBs that extends techniques for the alignment problem for propositional LTL over finite traces.


Exploring Non-Regular Extensions of Propositional Dynamic Logic with Description-Logics Features

arXiv.org Artificial Intelligence

We investigate the impact of non-regular path expressions on the decidability of satisfiability checking and querying in description logics extending ALC. Our primary objects of interest are ALCreg and ALCvpl, the extensions of with path expressions employing, respectively, regular and visibly-pushdown languages. The first one, ALCreg, is a notational variant of the well-known Propositional Dynamic Logic of Fischer and Ladner. The second one, ALCvpl, was introduced and investigated by Loding and Serre in 2007. The logic ALCvpl generalises many known decidable non-regular extensions of ALCreg. We provide a series of undecidability results. First, we show that decidability of the concept satisfiability problem for ALCvpl is lost upon adding the seemingly innocent Self operator. Second, we establish undecidability for the concept satisfiability problem for ALCvpl extended with nominals. Interestingly, our undecidability proof relies only on one single non-regular (visibly-pushdown) language, namely on r#s# := { r^n s^n | n in N } for fixed role names r and s. Finally, in contrast to the classical database setting, we establish undecidability of query entailment for queries involving non-regular atoms from r#s#, already in the case of ALC-TBoxes.


Exploiting Uncertainty for Querying Inconsistent Description Logics Knowledge Bases

arXiv.org Artificial Intelligence

The necessity to manage inconsistency in Description Logics Knowledge Bases (KBs) has come to the fore with the increasing importance gained by the Semantic Web, where information comes from different sources that constantly change their content and may contain contradictory descriptions when considered either alone or together. Classical reasoning algorithms do not handle inconsistent KBs, forcing the debugging of the KB in order to remove the inconsistency. In this paper, we exploit an existing probabilistic semantics called DISPONTE to overcome this problem and allow queries also in case of inconsistent KBs. We implemented our approach in the reasoners TRILL and BUNDLE and empirically tested the validity of our proposal. Moreover, we formally compare the presented approach to that of the repair semantics, one of the most established semantics when considering DL reasoning tasks.


Querying Circumscribed Description Logic Knowledge Bases

arXiv.org Artificial Intelligence

Circumscription is one of the main approaches for defining non-monotonic description logics (DLs). While the decidability and complexity of traditional reasoning tasks such as satisfiability of circumscribed DL knowledge bases (KBs) is well understood, for evaluating conjunctive queries (CQs) and unions thereof (UCQs), not even decidability had been established. In this paper, we prove decidability of (U)CQ evaluation on circumscribed DL KBs and obtain a rather complete picture of both the combined complexity and the data complexity, for DLs ranging from ALCHIO via EL to various versions of DL-Lite. We also study the much simpler atomic queries (AQs).


Inconsistency Handling in Prioritized Databases with Universal Constraints: Complexity Analysis and Links with Active Integrity Constraints

arXiv.org Artificial Intelligence

This paper revisits the problem of repairing and querying inconsistent databases equipped with universal constraints. We adopt symmetric difference repairs, in which both deletions and additions of facts can be used to restore consistency, and suppose that preferred repair actions are specified via a binary priority relation over (negated) facts. Our first contribution is to show how existing notions of optimal repairs, defined for simpler denial constraints and repairs solely based on fact deletion, can be suitably extended to our richer setting. We next study the computational properties of the resulting repair notions, in particular, the data complexity of repair checking and inconsistency-tolerant query answering. Finally, we clarify the relationship between optimal repairs of prioritized databases and repair notions introduced in the framework of active integrity constraints. In particular, we show that Pareto-optimal repairs in our setting correspond to founded, grounded and justified repairs w.r.t. the active integrity constraints obtained by translating the prioritized database. Our study also yields useful insights into the behavior of active integrity constraints.


Mining ℰℒ⊥ Bases with Adaptable Role Depth

Journal of Artificial Intelligence Research

In Formal Concept Analysis, a base for a finite structure is a set of implications that characterizes all valid implications of the structure. This notion can be adapted to the context of Description Logic, where the base consists of a set of concept inclusions instead of implications. In this setting, concept expressions can be arbitrarily large. Thus, it is not clear whether a finite base exists and, if so, how large concept expressions may need to be. We first revisit results in the literature for mining ℰℒ⊥ bases from finite interpretations. Those mainly focus on finding a finite base or on fixing the role depth but potentially losing some of the valid concept inclusions with higher role depth. We then present a new strategy for mining ℰℒ⊥ bases which is adaptable in the sense that it can bound the role depth of concepts depending on the local structure of the interpretation. Our strategy guarantees to capture all ℰℒ⊥ concept inclusions holding in the interpretation, not only the ones up to a fixed role depth. We also consider the case of confident ℰℒ⊥ bases, which requires that some proportion of the domain of the interpretation satisfies the base, instead of the whole domain. This case is useful to cope with noisy data.


Constructing Proofs in Symmetric Networks

Neural Information Processing Systems

This paper considers the problem of expressing predicate calculus in con(cid:173) nectionist networks that are based on energy minimization. Given a first(cid:173) order-logic knowledge base and a bound k, a symmetric network is con(cid:173) structed (like a Boltzman machine or a Hopfield network) that searches for a proof for a given query. If a resolution-based proof of length no longer than k exists, then the global minima of the energy function that is associated with the network represent such proofs. The network that is generated is of size cubic in the bound k and linear in the knowledge size. There are no restrictions on the type of logic formulas that can be represented.