Goto

Collaborating Authors

 Description Logic


Exchanging OWL 2 QL Knowledge Bases

arXiv.org Artificial Intelligence

Knowledge base exchange is an important problem in the area of data exchange and knowledge representation, where one is interested in exchanging information between a source and a target knowledge base connected through a mapping. In this paper, we study this fundamental problem for knowledge bases and mappings expressed in OWL 2 QL, the profile of OWL 2 based on the description logic DL-Lite_R. More specifically, we consider the problem of computing universal solutions, identified as one of the most desirable translations to be materialized, and the problem of computing UCQ-representations, which optimally capture in a target TBox the information that can be extracted from a source TBox and a mapping by means of unions of conjunctive queries. For the former we provide a novel automata-theoretic technique, and complexity results that range from NP to EXPTIME, while for the latter we show NLOGSPACE-completeness.


A Neo-Topological Approach to Reasoning on Ontologies with Exceptions and Comparison with Defeasible Description Logics

AAAI Conferences

This article compares Defeasible Description Logics (DDL) and Topological Approach to reason on Ontologies with exceptions. DDL is integration between Description Logics and Defeasible Logics to deal with monotonic and non-monotonic parts of the knowledge bases respectively. Topological approach tries to reason on inconsistent knowledge bases using the conventional topological operators e.g., interior, exterior, border and closure. We develop neo-Topology based on topological operators and we make major development and improvements of current Topological approach by properly introducing the ``Thickness Border'' with strong inference rules. We proof the validity of the inference rules using set operations. We demonstrate both approaches with appropriate example. We show the advantages and disadvantages of both approaches.


On Rational Closure in Description Logics of Typicality

arXiv.org Artificial Intelligence

We define the notion of rational closure in the context of Description Logics extended with a tipicality operator. We start from ALC+T, an extension of ALC with a typicality operator T: intuitively allowing to express concepts of the form T(C), meant to select the "most normal" instances of a concept C. The semantics we consider is based on rational model. But we further restrict the semantics to minimal models, that is to say, to models that minimise the rank of domain elements. We show that this semantics captures exactly a notion of rational closure which is a natural extension to Description Logics of Lehmann and Magidor's original one. We also extend the notion of rational closure to the Abox component. We provide an ExpTime algorithm for computing the rational closure of an Abox and we show that it is sound and complete with respect to the minimal model semantics.


An Experiment on the Connection between the DLs' Family DL and the Real World

arXiv.org Artificial Intelligence

This paper describes the analysis of a selected testbed of Semantic Web ontologies, by a SPARQL query, which determines those ontologies that can be related to the description logic DL, introduced in [4] and studied in [9]. We will see that a reasonable number of them is expressible within such computationally efficient language. We expect that, in a long-term view, a temporalization of description logics, and consequently, of OWL(2), can open new perspectives for the inclusion in this language of a greater number of ontologies of the testbed and, hopefully, of the "real world".


Equality-Friendly Well-Founded Semantics and Applications to Description Logics

AAAI Conferences

We tackle the problem of defining a well-founded semantics for Datalog rules with existentially quantified variables in their heads and negations in their bodies. In particular, we provide a well-founded semantics (WFS) for the recent Datalog+/- family of ontology languages, which covers several important description logics (DLs). To do so, we generalize Datalog+/- by non-stratified nonmonotonic negation in rule bodies, and we define a WFS for this generalization via guarded fixed-point logic. We refer to this approach as equality-friendly WFS, since it has the advantage that it does not make the unique name assumption (UNA); this brings it close to OWL and its profiles as well as typical DLs, which also do not make the UNA. We prove that for guarded Datalog+/- with negation under the equality-friendly WFS, conjunctive query answering is decidable, and we provide precise complexity results for this problem. From these results, we obtain precise definitions of the standard WFS extensions of EL and of members of the DL-Lite family, as well as corresponding complexity results for query answering.


Complexity Analysis and Variational Inference for Interpretation-based Probabilistic Description Logic

arXiv.org Artificial Intelligence

This paper presents complexity analysis and variational methods for inference in probabilistic description logics featuring Boolean operators, quantification, qualified number restrictions, nominals, inverse roles and role hierarchies. Inference is shown to be PEXP-complete, and variational methods are designed so as to exploit logical inference whenever possible.


Type-elimination-based reasoning for the description logic SHIQbs using decision diagrams and disjunctive datalog

arXiv.org Artificial Intelligence

We propose a novel, type-elimination-based method for reasoning in the description logic SHIQbs including DL-safe rules. To this end, we first establish a knowledge compilation method converting the terminological part of an ALCIb knowledge base into an ordered binary decision diagram (OBDD) which represents a canonical model. This OBDD can in turn be transformed into disjunctive Datalog and merged with the assertional part of the knowledge base in order to perform combined reasoning. In order to leverage our technique for full SHIQbs, we provide a stepwise reduction from SHIQbs to ALCIb that preserves satisfiability and entailment of positive and negative ground facts. The proposed technique is shown to be worst case optimal w.r.t. combined and data complexity and easily admits extensions with ground conjunctive queries.


Conjunctive Query Answering for the Description Logic SHIQ

arXiv.org Artificial Intelligence

Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive query answering over DL knowledge bases is only poorly understood if transitive roles are admitted in the query. In this paper, we consider unions of conjunctive queries over knowledge bases formulated in the prominent DL SHIQ and allow transitive roles in both the query and the knowledge base. We show decidability of query answering in this setting and establish two tight complexity bounds: regarding combined complexity, we prove that there is a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query, which is optimal. Regarding data complexity, we prove containment in co-NP.


Reasoning with Very Expressive Fuzzy Description Logics

arXiv.org Artificial Intelligence

It is widely recognized today that the management of imprecision and vagueness will yield more intelligent and realistic knowledge-based applications. Description Logics (DLs) are a family of knowledge representation languages that have gained considerable attention the last decade, mainly due to their decidability and the existence of empirically high performance of reasoning algorithms. In this paper, we extend the well known fuzzy ALC DL to the fuzzy SHIN DL, which extends the fuzzy ALC DL with transitive role axioms (S), inverse roles (I), role hierarchies (H) and number restrictions (N). We illustrate why transitive role axioms are difficult to handle in the presence of fuzzy interpretations and how to handle them properly. Then we extend these results by adding role hierarchies and finally number restrictions. The main contributions of the paper are the decidability proof of the fuzzy DL languages fuzzy-SI and fuzzy-SHIN, as well as decision procedures for the knowledge base satisfiability problem of the fuzzy-SI and fuzzy-SHIN.


Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

arXiv.org Artificial Intelligence

Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery.