Constraint-Based Reasoning
A Pseudo-Boolean Solution to the Maximum Quartet Consistency Problem
Morgado, Antonio, Marques-Silva, Joao
Determining the evolutionary history of a given biological data is an important task in biological sciences. Given a set of quartet topologies over a set of taxa, the Maximum Quartet Consistency (MQC) problem consists of computing a global phylogeny that satisfies the maximum number of quartets. A number of solutions have been proposed for the MQC problem, including Dynamic Programming, Constraint Programming, and more recently Answer Set Programming (ASP). ASP is currently the most efficient approach for optimally solving the MQC problem. This paper proposes encoding the MQC problem with pseudo-Boolean (PB) constraints. The use of PB allows solving the MQC problem with efficient PB solvers, and also allows considering different modeling approaches for the MQC problem. Initial results are promising, and suggest that PB can be an effective alternative for solving the MQC problem.
Comparing the notions of optimality in CP-nets, strategic games and soft constraints
Apt, Krzysztof R., Rossi, Francesca, Venable, Kristen Brent
The notion of optimality naturally arises in many areas of applied mathematics and computer science concerned with decision making. Here we consider this notion in the context of three formalisms used for different purposes in reasoning about multi-agent systems: strategic games, CP-nets, and soft constraints. To relate the notions of optimality in these formalisms we introduce a natural qualitative modification of the notion of a strategic game. We show then that the optimal outcomes of a CP-net are exactly the Nash equilibria of such games. This allows us to use the techniques of game theory to search for optimal outcomes of CP-nets and vice-versa, to use techniques developed for CP-nets to search for Nash equilibria of the considered games. Then, we relate the notion of optimality used in the area of soft constraints to that used in a generalization of strategic games, called graphical games. In particular we prove that for a natural class of soft constraints that includes weighted constraints every optimal solution is both a Nash equilibrium and Pareto efficient joint strategy. For a natural mapping in the other direction we show that Pareto efficient joint strategies coincide with the optimal solutions of soft constraints.
Unicast and Multicast Qos Routing with Soft Constraint Logic Programming
Bistarelli, Stefano, Montanari, Ugo, Rossi, Francesca, Santini, Francesco
We present a formal model to represent and solve the unicast/multicast routing problem in networks with Quality of Service (QoS) requirements. To attain this, first we translate the network adapting it to a weighted graph (unicast) or and-or graph (multicast), where the weight on a connector corresponds to the multidimensional cost of sending a packet on the related network link: each component of the weights vector represents a different QoS metric value (e.g. bandwidth, cost, delay, packet loss). The second step consists in writing this graph as a program in Soft Constraint Logic Programming (SCLP): the engine of this framework is then able to find the best paths/trees by optimizing their costs and solving the constraints imposed on them (e.g. delay < 40msec), thus finding a solution to QoS routing problems. Moreover, c-semiring structures are a convenient tool to model QoS metrics. At last, we provide an implementation of the framework over scale-free networks and we suggest how the performance can be improved.
Symmetry Breaking for Maximum Satisfiability
Marques-Silva, Joao, Lynce, Ines, Manquinho, Vasco
Symmetries are intrinsic to many combinatorial problems including Boolean Satisfiability (SAT) and Constraint Programming (CP). In SAT, the identification of symmetry breaking predicates (SBPs) is a well-known, often effective, technique for solving hard problems. The identification of SBPs in SAT has been the subject of significant improvements in recent years, resulting in more compact SBPs and more effective algorithms. The identification of SBPs has also been applied to pseudo-Boolean (PB) constraints, showing that symmetry breaking can also be an effective technique for PB constraints. This paper extends further the application of SBPs, and shows that SBPs can be identified and used in Maximum Satisfiability (MaxSAT), as well as in its most well-known variants, including partial MaxSAT, weighted MaxSAT and weighted partial MaxSAT. As with SAT and PB, symmetry breaking predicates for MaxSAT and variants are shown to be effective for a representative number of problem domains, allowing solving problem instances that current state of the art MaxSAT solvers could not otherwise solve.
Combinatorial Explorations in Su-Doku
Su-Doku, a popular combinatorial puzzle, provides an excellent testbench for heuristic explorations. Several interesting questions arise from its deceptively simple set of rules. How many distinct Su-Doku grids are there? How to find a solution to a Su-Doku puzzle? Is there a unique solution to a given Su-Doku puzzle? What is a good estimation of a puzzle's difficulty? What is the minimum puzzle size (the number of "givens")? This paper explores how these questions are related to the well-known alldifferent constraint which emerges in a wide variety of Constraint Satisfaction Problems (CSP) and compares various algorithmic approaches based on different formulations of Su-Doku.
On the Scaling Window of Model RB
Zhao, Chunyan, Xu, Ke, Zheng, Zhiming
This paper analyzes the scaling window of a random CSP model (i.e. model RB) for which we can identify the threshold points exactly, denoted by $r_{cr}$ or $p_{cr}$. For this model, we establish the scaling window $W(n,\delta)=(r_{-}(n,\delta), r_{+}(n,\delta))$ such that the probability of a random instance being satisfiable is greater than $1-\delta$ for $r
From k-SAT to k-CSP: Two Generalized Algorithms
Li, Liang, Li, Xin, Liu, Tian, Xu, Ke
Constraint satisfaction problems (CSPs) models many important intractable NP-hard problems such as propositional satisfiability problem (SAT). Algorithms with non-trivial upper bounds on running time for restricted SAT with bounded clause length k (k-SAT) can be classified into three styles: DPLL-like, PPSZ-like and Local Search, with local search algorithms having already been generalized to CSP with bounded constraint arity k (k-CSP). We generalize a DPLL-like algorithm in its simplest form and a PPSZ-like algorithm from k-SAT to k-CSP. As far as we know, this is the first attempt to use PPSZ-like strategy to solve k-CSP, and before little work has been focused on the DPLL-like or PPSZ-like strategies for k-CSP.
Representing and Reasoning with Preferences
In the reverse direction, artificial intelligence brings a fresh perspective to some of the questions addressed by social choice. From a computational perspective, may not be feasible. The agent wants a cheap, we can look at how computationally we low-mileage Ferrari, but no such car exists. As we shall see later in may therefore look for the most preferred outcome this article, computational intractability may among those that are feasible. With multiple actually be advantageous in this setting. For agents, their goals may be conflicting. We may therefore look for the outcome an election is possible in theory, but computationally that is most preferred by the agents. Preferences difficult to perform in practice. From a are thus useful in many areas of artificial representational perspective, we can look at intelligence including planning, sche dhow we represent preferences, especially when uling, multiagent systems, combinatorial auctions, the number of outcomes is combinatorially and game playing.
Report on the SAT 2007 Conference on Theory and Applications of Satisfiability Testing
Marques-Silva, Joao, Sakallah, Karem, Lynce, Ines
A number of additional events were associated with the SAT conference, including the well-known SAT competition, the QBF evaluation, the PB evaluation, and the MAX-SAT evaluation. Armin Biere, (CP) techniques for word-level problems professor at the Johannes Kepler University, and their propositional encoding, Linz, Austria, was the invited and satisfiability modulo theories speaker for this special session, having (SMT). Submissions were solicited for addressed design and implementation original research on proof systems and issues in modern SAT solvers. Armin Biere, Marijn Heule, and and extensions of SAT find many practical The conference attracted 80 participants, Knot Pipatsrisawat. The SAT Conference Was Held in Lisbon, Portugal.
AAAI-07 Workshop Reports
Anand, Sarabjot Singh, Bahls, Daniel, Burghart, Catherina R., Burstein, Mark, Chen, Huajun, Collins, John, Dietterich, Tom, Doyle, Jon, Drummond, Chris, Elazmeh, William, Geib, Christopher, Goldsmith, Judy, Guesgen, Hans W., Hendler, Jim, Jannach, Dietmar, Japkowicz, Nathalie, Junker, Ulrich, Kaminka, Gal A., Kobsa, Alfred, Lang, Jerome, Leake, David B., Lewis, Lundy, Ligozat, Gerard, Macskassy, Sofus, McDermott, Drew, Metzler, Ted, Mobasher, Bamshad, Nambiar, Ullas, Nie, Zaiqing, Orsvarn, Klas, O', Sullivan, Barry, Pynadath, David, Renz, Jochen, Rodriguez, Rita V., Roth-Berghofer, Thomas, Schulz, Stefan, Studer, Rudi, Wang, Yimin, Wellman, Michael
The AAAI-07 workshop program was held Sunday and Monday, July 22-23, in Vancouver, British Columbia, Canada. The program included the following thirteen workshops: (1) Acquiring Planning Knowledge via Demonstration; (2) Configuration; (3) Evaluating Architectures for Intelligence; (4) Evaluation Methods for Machine Learning; (5) Explanation-Aware Computing; (6) Human Implications of Human-Robot Interaction; (7) Intelligent Techniques for Web Personalization; (8) Plan, Activity, and Intent Recognition; (9) Preference Handling for Artificial Intelligence; (10) Semantic e-Science; (11) Spatial and Temporal Reasoning; (12) Trading Agent Design and Analysis; and (13) Information Integration on the Web.