Constraint-Based Reasoning
Solving Dynamic Constraint Satisfaction Problems by Identifying Stable Features
Wallace, Richard J. (University College Cork) | Grimes, Diarmuid (University College Cork) | Freuder, Eugene C. (University College Cork)
This paper presents a new analysis of dynamic constraint satisfaction problems (DCSPs) with finite domains and a new approach to solving them. We first show that even very small changes in a CSP, in the form of addition of constraints or changes in constraint relations, can have profound effects on search performance. These effects are reflected in the amenability of the problem to different forms of heuristic action as well as overall quality of search. In addition, classical DCSP methods perform poorly on these problems because there are sometimes no solutions similar to the original one found. We then show that the same changes do not markedly affect the locations of the major sources of contention in the problem. A technique for iterated sampling that performs a careful assessment of this property and uses the information during subsequent search, performs well even when it only uses information based on the original problem in the DCSP sequence. The result is a new approach to solving DCSPs that is based on a robust strategy for ordering variables rather than on robust solutions.
Hiding Quiet Solutions in Random Constraint Satisfaction Problems
Krzakala, Florent, Zdeborovรก, Lenka
We study constraint satisfaction problems on the so-called 'planted' random ensemble. We show that for a certain class of problems, e.g. graph coloring, many of the properties of the usual random ensemble are quantitatively identical in the planted random ensemble. We study the structural phase transitions, and the easy/hard/easy pattern in the average computational complexity. We also discuss the finite temperature phase diagram, finding a close connection with the liquid/glass/solid phenomenology.
Decompositions of All Different, Global Cardinality and Related Constraints
Bessiere, Christian, Katsirelos, George, Narodytska, Nina, Quimper, Claude-Guy, Walsh, Toby
We show that some common and important global constraints like ALL-DIFFERENT and GCC can be decomposed into simple arithmetic constraints on which we achieve bound or range consistency, and in some cases even greater pruning. These decompositions can be easily added to new solvers. They also provide other constraints with access to the state of the propagator by sharing of variables. Such sharing can be used to improve propagation between constraints. We report experiments with our decomposition in a pseudo-Boolean solver.
Multiset Ordering Constraints
Frisch, Alan M., Miguel, Ian, Kiziltan, Zeynep, Hnich, Brahim, Walsh, Toby
We identify a new and important global (or non-binary) constraint. This constraint ensures that the values taken by two vectors of variables, when viewed as multisets, are ordered. This constraint is useful for a number of different applications including breaking symmetry and fuzzy constraint satisfaction. We propose and implement an efficient linear time algorithm for enforcing generalised arc consistency on such a multiset ordering constraint. Experimental results on several problem domains show considerable promise.
Circuit Complexity and Decompositions of Global Constraints
Bessiere, Christian, Katsirelos, George, Narodytska, Nina, Walsh, Toby
We show that tools from circuit complexity can be used to study decompositions of global constraints. In particular, we study decompositions of global constraints into conjunctive normal form with the property that unit propagation on the decomposition enforces the same level of consistency as a specialized propagation algorithm. We prove that a constraint propagator has a a polynomial size decomposition if and only if it can be computed by a polynomial size monotone Boolean circuit. Lower bounds on the size of monotone Boolean circuits thus translate to lower bounds on the size of decompositions of global constraints. For instance, we prove that there is no polynomial sized decomposition of the domain consistency propagator for the ALLDIFFERENT constraint.
Reasoning about soft constraints and conditional preferences: complexity results and approximation techniques
Domshlak, Carmel, Rossi, Francesca, Venable, Kristen Brent, Walsh, Toby
Many real life optimization problems contain both hard and soft constraints, as well as qualitative conditional preferences. However, there is no single formalism to specify all three kinds of information. We therefore propose a framework, based on both CP-nets and soft constraints, that handles both hard and soft constraints as well as conditional preferences efficiently and uniformly. We study the complexity of testing the consistency of preference statements, and show how soft constraints can faithfully approximate the semantics of conditional preference statements whilst improving the computational complexity
Enhancing Constraint Models for Planning Problems
Bartak, Roman (Charles University in Prague) | Toropila, Daniel (Charles University in Prague)
Planning problems deal with finding a sequence of actions that transfer the initial state of the world into a desired state. Frequently such problems are solved by dedicated algorithms but there exist planners based on translating the planning problem into a different formalism such as constraint satisfaction or Boolean satisfiability and using a general solver for this formalism. The paper describes how to enhance existing constraint models of planning problems by using techniques such as symmetry breaking (dominance rules), singleton consistency, and lifting.
A Fast Algorithm and Datalog Inexpressibility for Temporal Reasoning
We introduce a new tractable temporal constraint language, which strictly contains the Ord-Horn language of Buerkert and Nebel and the class of AND/OR precedence constraints. The algorithm we present for this language decides whether a given set of constraints is consistent in time that is quadratic in the input size. We also prove that (unlike Ord-Horn) this language cannot be solved by Datalog or by establishing local consistency.
Learning for Dynamic subsumption
Hamadi, Youssef, Jabbour, Said, Sais, Lakhdar
In this paper a new dynamic subsumption technique for Boolean CNF formulae is proposed. It exploits simple and sufficient conditions to detect during conflict analysis, clauses from the original formula that can be reduced by subsumption. During the learnt clause derivation, and at each step of the resolution process, we simply check for backward subsumption between the current resolvent and clauses from the original formula and encoded in the implication graph. Our approach give rise to a strong and dynamic simplification technique that exploits learning to eliminate literals from the original clauses. Experimental results show that the integration of our dynamic subsumption approach within the state-of-the-art SAT solvers Minisat and Rsat achieves interesting improvements particularly on crafted instances.
Online Multi-task Learning with Hard Constraints
Lugosi, Gabor, Papaspiliopoulos, Omiros, Stoltz, Gilles
We discuss multi-task online learning when a decision maker has to deal simultaneously with M tasks. The tasks are related, which is modeled by imposing that the M-tuple of actions taken by the decision maker needs to satisfy certain constraints. We give natural examples of such restrictions and then discuss a general class of tractable constraints, for which we introduce computationally efficient ways of selecting actions, essentially by reducing to an on-line shortest path problem. We briefly discuss "tracking" and "bandit" versions of the problem and extend the model in various ways, including non-additive global losses and uncountably infinite sets of tasks.