Goto

Collaborating Authors

 Constraint-Based Reasoning


Oriented Straight Line Segment Algebra: Qualitative Spatial Reasoning about Oriented Objects

arXiv.org Artificial Intelligence

Nearly 15 years ago, a set of qualitative spatial relations between oriented straight line segments (dipoles) was suggested by Schlieder. This work received substantial interest amongst the qualitative spatial reasoning community. However, it turned out to be difficult to establish a sound constraint calculus based on these relations. In this paper, we present the results of a new investigation into dipole constraint calculi which uses algebraic methods to derive sound results on the composition of relations and other properties of dipole calculi. Our results are based on a condensed semantics of the dipole relations. In contrast to the points that are normally used, dipoles are extended and have an intrinsic direction. Both features are important properties of natural objects. This allows for a straightforward representation of prototypical reasoning tasks for spatial agents. As an example, we show how to generate survey knowledge from local observations in a street network. The example illustrates the fast constraint-based reasoning capabilities of the dipole calculus. We integrate our results into two reasoning tools which are publicly available.


Integrating a Portfolio of Representations to Solve Hard Problems

AAAI Conferences

This paper advocates the use of a portfolio of representations for problem solving in complex domains. It describes an approach that decouples efficient storage mechanisms called descriptives from the decision-making procedures that employ them. An architecture that takes this approach can learn which representations are appropriate for a given problem class. Examples of search with a portfolio of representations are drawn from a broad set of domains.


Evaluations of the LODE Temporal Reasoning Tool with Hearing and Deaf Children

AAAI Conferences

LODE is a web tool for children that are novice readers, and is primarily meant for deaf children. It proposes written stories and interactive games for reasoning, globally, on the stories. In this paper, first, we motivate the rationale of LODE, and explain its reasoning games. Then we briefly describe the design of the web client-server architecture of LODE; the server employs a constraint programming system for creating and solving the LODE games in real time. Finally, we concentrate on two evaluations of the latest prototype of LODE: one with hearing novice readers; another one with deaf readers. We conclude by discussing the results of the evaluations, and their implications for LODE.


How to Complete an Interactive Configuration Process?

arXiv.org Artificial Intelligence

When configuring customizable software, it is useful to provide interactive tool-support that ensures that the configuration does not breach given constraints. But, when is a configuration complete and how can the tool help the user to complete it? We formalize this problem and relate it to concepts from non-monotonic reasoning well researched in Artificial Intelligence. The results are interesting for both practitioners and theoreticians. Practitioners will find a technique facilitating an interactive configuration process and experiments supporting feasibility of the approach. Theoreticians will find links between well-known formal concepts and a concrete practical application.


Proceedings 6th International Workshop on Local Search Techniques in Constraint Satisfaction

arXiv.org Artificial Intelligence

LSCS is a satellite workshop of the international conference on principles and practice of Constraint Programming (CP), since 2004. It is devoted to local search techniques in constraint satisfaction, and focuses on all aspects of local search techniques, including: design and implementation of new algorithms, hybrid stochastic-systematic search, reactive search optimization, adaptive search, modeling for local-search, global constraints, flexibility and robustness, learning methods, and specific applications.


A Constraint-directed Local Search Approach to Nurse Rostering Problems

arXiv.org Artificial Intelligence

In this paper, we investigate the hybridization of constraint programming and local search techniques within a large neighbourhood search scheme for solving highly constrained nurse rostering problems. As identified by the research, a crucial part of the large neighbourhood search is the selection of the fragment (neighbourhood, i.e. the set of variables), to be relaxed and re-optimized iteratively. The success of the large neighbourhood search depends on the adequacy of this identified neighbourhood with regard to the problematic part of the solution assignment and the choice of the neighbourhood size. We investigate three strategies to choose the fragment of different sizes within the large neighbourhood search scheme. The first two strategies are tailored concerning the problem properties. The third strategy is more general, using the information of the cost from the soft constraint violations and their propagation as the indicator to choose the variables added into the fragment. The three strategies are analyzed and compared upon a benchmark nurse rostering problem. Promising results demonstrate the possibility of future work in the hybrid approach.


Toward an automaton Constraint for Local Search

arXiv.org Artificial Intelligence

We explore the idea of using finite automata to implement new constraints for local search (this is already a successful technique in constraint-based global search). We show how it is possible to maintain incrementally the violations of a constraint and its decision variables from an automaton that describes a ground checker for that constraint. We establish the practicality of our approach idea on real-life personnel rostering problems, and show that it is competitive with the approach of [Pralong, 2007].


Parallel local search for solving Constraint Problems on the Cell Broadband Engine (Preliminary Results)

arXiv.org Artificial Intelligence

We explore the use of the Cell Broadband Engine (Cell/BE for short) for combinatorial optimization applications: we present a parallel version of a constraint-based local search algorithm that has been implemented on a multiprocessor BladeCenter machine with twin Cell/BE processors (total of 16 SPUs per blade). This algorithm was chosen because it fits very well the Cell/BE architecture and requires neither shared memory nor communication between processors, while retaining a compact memory footprint. We study the performance on several large optimization benchmarks and show that this achieves mostly linear time speedups, even sometimes super-linear. This is possible because the parallel implementation might explore simultaneously different parts of the search space and therefore converge faster towards the best sub-space and thus towards a solution. Besides getting speedups, the resulting times exhibit a much smaller variance, which benefits applications where a timely reply is critical.


Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

arXiv.org Artificial Intelligence

Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance.


Enhancing the Context-Enhanced Additive Heuristic with Precedence Constraints

AAAI Conferences

Recently, Helmert and Geffner proposed the context-enhanced additive heuristic, where fact costs are evaluated relative to context states that arise from achieving first a pivot condition of each operator. As Helmert and Geffner pointed out, the method can be generalized to consider contexts arising from arbitrary precedence constraints over operator conditions instead. Herein, we provide such a generalization. We extend Helmert and Geffner's equations, and discuss a number of design choices that arise. Drawing on previous work on goal orderings, we design a family of methods for automatically generating precedence constraints. We run large-scale experiments, showing that the technique can help significantly, depending on the choice of precedence constraints. We shed some light on this by profiling the behavior of all possible precedence constraints, using a sampling technique.