Goto

Collaborating Authors

 Constraint-Based Reasoning


Incrementally Solving STNs by Enforcing Partial Path Consistency

AAAI Conferences

Efficient management and propagation of temporal constraints is important for temporal planning as well as for scheduling. During plan development, new events and temporal constraints are added and existing constraints may be tightened; the consistency of the whole temporal network is frequently checked; and results of constraint propagation guide further search. Recent work shows that enforcing partial path consistency provides an efficient means of propagating temporal information for the popular Simple Temporal Network (STN). We show that partial path consistency can be enforced incrementally, thus exploiting the similarities of the constraint network between subsequent edge tightenings. We prove that the worst-case time complexity of our algorithm can be bounded both by the number of edges in the chordal graph (which is better than the previous bound of the number of vertices squared), and by the degree of the chordal graph times the number of vertices incident on updated edges. We show that for many sparse graphs, the latter bound is better than that of the previously best-known approaches. In addition, our algorithm requires space only linear in the number of edges of the chordal graph, whereas earlier work uses space quadratic in the number of vertices. Finally, empirical results show that when incrementally solving sparse STNs, stemming from problems such as Hierarchical Task Network planning, our approach outperforms extant algorithms.


Indexer Based Dynamic Web Services Discovery

arXiv.org Artificial Intelligence

Recent advancement in web services plays an important role in business to business and business to consumer interaction. Discovery mechanism is not only used to find a suitable service but also provides collaboration between service providers and consumers by using standard protocols. A static web service discovery mechanism is not only time consuming but requires continuous human interaction. This paper proposed an efficient dynamic web services discovery mechanism that can locate relevant and updated web services from service registries and repositories with timestamp based on indexing value and categorization for faster and efficient discovery of service. The proposed prototype focuses on quality of service issues and introduces concept of local cache, categorization of services, indexing mechanism, CSP (Constraint Satisfaction Problem) solver, aging and usage of translator. Performance of proposed framework is evaluated by implementing the algorithm and correctness of our method is shown. The results of proposed framework shows greater performance and accuracy in dynamic discovery mechanism of web services resolving the existing issues of flexibility, scalability, based on quality of service, and discovers updated and most relevant services with ease of usage.


Automatically Discovering Hidden Transformation Chaining Constraints

arXiv.org Artificial Intelligence

Model transformations operate on models conforming to precisely defined metamodels. Consequently, it often seems relatively easy to chain them: the output of a transformation may be given as input to a second one if metamodels match. However, this simple rule has some obvious limitations. For instance, a transformation may only use a subset of a metamodel. Therefore, chaining transformations appropriately requires more information. We present here an approach that automatically discovers more detailed information about actual chaining constraints by statically analyzing transformations. The objective is to provide developers who decide to chain transformations with more data on which to base their choices. This approach has been successfully applied to the case of a library of endogenous transformations. They all have the same source and target metamodel but have some hidden chaining constraints. In such a case, the simple metamodel matching rule given above does not provide any useful information.


A new model for solution of complex distributed constrained problems

arXiv.org Artificial Intelligence

In this paper we describe an original computational model for solving different types of Distributed Constraint Satisfaction Problems (DCSP). The proposed model is called Controller-Agents for Constraints Solving (CACS). This model is intended to be used which is an emerged field from the integration between two paradigms of different nature: Multi-Agent Systems (MAS) and the Constraint Satisfaction Problem paradigm (CSP) where all constraints are treated in central manner as a black-box. This model allows grouping constraints to form a subset that will be treated together as a local problem inside the controller. Using this model allows also handling non-binary constraints easily and directly so that no translating of constraints into binary ones is needed. This paper presents the implementation outlines of a prototype of DCSP solver, its usage methodology and overview of the CACS application for timetabling problems.


Rewriting Constraint Models with Metamodels

arXiv.org Artificial Intelligence

An important challenge in constraint programming is to rewrite constraint models into executable programs calculat- ing the solutions. This phase of constraint processing may require translations between constraint programming lan- guages, transformations of constraint representations, model optimizations, and tuning of solving strategies. In this paper, we introduce a pivot metamodel describing the common fea- tures of constraint models including different kinds of con- straints, statements like conditionals and loops, and other first-class elements like object classes and predicates. This metamodel is general enough to cope with the constructions of many languages, from object-oriented modeling languages to logic languages, but it is independent from them. The rewriting operations manipulate metamodel instances apart from languages. As a consequence, the rewriting operations apply whatever languages are selected and they are able to manage model semantic information. A bridge is created between the metamodel space and languages using parsing techniques. Tools from the software engineering world can be useful to implement this framework.


Using ATL to define advanced and flexible constraint model transformations

arXiv.org Artificial Intelligence

Transforming constraint models is an important task in re- cent constraint programming systems. User-understandable models are defined during the modeling phase but rewriting or tuning them is manda- tory to get solving-efficient models. We propose a new architecture al- lowing to define bridges between any (modeling or solver) languages and to implement model optimizations. This architecture follows a model- driven approach where the constraint modeling process is seen as a set of model transformations. Among others, an interesting feature is the def- inition of transformations as concept-oriented rules, i.e. based on types of model elements where the types are organized into a hierarchy called a metamodel.


Constraint solvers: An empirical evaluation of design decisions

arXiv.org Artificial Intelligence

This paper presents an evaluation of the design decisions made in four state-of-the-art constraint solvers; Choco, ECLiPSe, Gecode, and Minion. To assess the impact of design decisions, instances of the five problem classes n-Queens, Golomb Ruler, Magic Square, Social Golfers, and Balanced Incomplete Block Design are modelled and solved with each solver. The results of the experiments are not meant to give an indication of the performance of a solver, but rather investigate what influence the choice of algorithms and data structures has. The analysis of the impact of the design decisions focuses on the different ways of memory management, behaviour with increasing problem size, and specialised algorithms for specific types of variables. It also briefly considers other, less significant decisions.


Dominion -- A constraint solver generator

arXiv.org Artificial Intelligence

This paper proposes a design for a system to generate constraint solvers that are specialised for specific problem models. It describes the design in detail and gives preliminary experimental results showing the feasibility and effectiveness of the approach.


Structural inference affects depth perception in the context of potential occlusion

Neural Information Processing Systems

In many domains, humans appear to combine perceptual cues in a near-optimal, probabilistic fashion: two noisy pieces of information tend to be combined linearly with weights proportional to the precision of each cue. Here we present a case where structural information plays an important role. The presence of a background cue gives rise to the possibility of occlusion, and places a soft constraint on the location of a target – in effect propelling it forward. We present an ideal observer model of depth estimation for this situation where structural or ordinal information is important and then fit the model to human data from a stereo-matching task. To test whether subjects are truly using ordinal cues in a probabilistic manner we then vary the uncertainty of the task. We find that the model accurately predicts shifts in subject’s behavior. Our results indicate that the nervous system estimates depth ordering in a probabilistic fashion and estimates the structure of the visual scene during depth perception.


Improved Moves for Truncated Convex Models

Neural Information Processing Systems

We consider the problem of obtaining the approximate maximum a posteriori estimate of a discrete random field characterized by pairwise potentials that form a truncated convex model. For this problem, we propose an improved st-mincut based move making algorithm. Unlike previous move making approaches, which either provide a loose bound or no bound on the quality of the solution (in terms of the corresponding Gibbs energy), our algorithm achieves the same guarantees as the standard linear programming (LP) relaxation. Compared to previous approaches based on the LP relaxation, e.g. interior-point algorithms or tree-reweighted message passing (TRW), our method is faster as it uses only the efficient st-mincut algorithm in its design. Furthermore, it directly provides us with a primal solution (unlike TRW and other related methods which attempt to solve the dual of the LP). We demonstrate the effectiveness of the proposed approach on both synthetic and standard real data problems. Our analysis also opens up an interesting question regarding the relationship between move making algorithms (such as $\alpha$-expansion and the algorithms presented in this paper) and the randomized rounding schemes used with convex relaxations. We believe that further explorations in this direction would help design efficient algorithms for more complex relaxations.