Constraint-Based Reasoning
Model AI Assignments
Neller, Todd William (Gettysburg College) | DeNero, John (University of California, Berkeley) | Klein, Dan (University of California, Berkeley) | Koenig, Sven (University of Southern California) | Yeoh, William (University of Southern California) | Zheng, Xiaoming (University of Southern California) | Daniel, Kenny (University of Southern California) | Nash, Alex (University of Southern California) | Dodds, Zachary (Harvey Mudd College) | Carenini, Giuseppe (University of British Columbia) | Poole, David (University of British Columbia) | Brooks, Chris (University of San Francisco)
The Model AI Assignments session seeks to gather and disseminate the best assignment designs of the Artificial Intelligence (AI) Education community. Recognizing that assignments form the core of student learning experience, we here present abstracts of eight AI assignments that are easily adoptable, playfully engaging, and flexible for a variety of instructor needs.
Is Computational Complexity a Barrier to Manipulation?
When agents are acting together, they may need a simple mechanism to decide on joint actions. One possibility is to have the agents express their preferences in the form of a ballot and use a voting rule to decide the winning action(s). Unfortunately, agents may try to manipulate such an election by misreporting their preferences. Fortunately, it has been shown that it is NP-hard to compute how to manipulate a number of different voting rules. However, NP-hardness only bounds the worst-case complexity. Recent theoretical results suggest that manipulation may often be easy in practice. To address this issue, I suggest studying empirically if computational complexity is in practice a barrier to manipulation. The basic tool used in my investigations is the identification of computational "phase transitions". Such an approach has been fruitful in identifying hard instances of propositional satisfiability and other NP-hard problems. I show that phase transition behaviour gives insight into the hardness of manipulating voting rules, increasing concern that computational complexity is indeed any sort of barrier. Finally, I look at the problem of computing manipulation of other, related problems like stable marriage and tournament problems.
On The Complexity and Completeness of Static Constraints for Breaking Row and Column Symmetry
Katsirelos, George, Narodytska, Nina, Walsh, Toby
We consider a common type of symmetry where we have a matrix of decision variables with interchangeable rows and columns. A simple and efficient method to deal with such row and column symmetry is to post symmetry breaking constraints like DOUBLELEX and SNAKELEX. We provide a number of positive and negative results on posting such symmetry breaking constraints. On the positive side, we prove that we can compute in polynomial time a unique representative of an equivalence class in a matrix model with row and column symmetry if the number of rows (or of columns) is bounded and in a number of other special cases. On the negative side, we show that whilst DOUBLELEX and SNAKELEX are often effective in practice, they can leave a large number of symmetric solutions in the worst case. In addition, we prove that propagating DOUBLELEX completely is NP-hard. Finally we consider how to break row, column and value symmetry, correcting a result in the literature about the safeness of combining different symmetry breaking constraints. We end with the first experimental study on how much symmetry is left by DOUBLELEX and SNAKELEX on some benchmark problems.
Decomposition of the NVALUE constraint
Bessiere, Christian, Katsirelos, George, Narodytska, Nina, Quimper, Claude-Guy, Walsh, Toby
We study decompositions of the global NVALUE constraint. Our main contribution is theoretical: we show that there are propagators for global constraints like NVALUE which decomposition can simulate with the same time complexity but with a much greater space complexity. This suggests that the benefit of a global propagator may often not be in saving time but in saving space. Our other theoretical contribution is to show for the first time that range consistency can be enforced on NVALUE with the same worst-case time complexity as bound consistency. Finally, the decompositions we study are readily encoded as linear inequalities. We are therefore able to use them in integer linear programs.
Symmetry within and between solutions
Symmetry can be used to help solve many problems. For instance, Einstein's famous 1905 paper ("On the Electrodynamics of Moving Bodies") uses symmetry to help derive the laws of special relativity. In artificial intelligence, symmetry has played an important role in both problem representation and reasoning. I describe recent work on using symmetry to help solve constraint satisfaction problems. Symmetries occur within individual solutions of problems as well as between different solutions of the same problem. Symmetry can also be applied to the constraints in a problem to give new symmetric constraints. Reasoning about symmetry can speed up problem solving, and has led to the discovery of new results in both graph and number theory.
On The Power of Tree Projections: Structural Tractability of Enumerating CSP Solutions
Greco, Gianluigi, Scarcello, Francesco
The problem of deciding whether CSP instances admit solutions has been deeply studied in the literature, and several structural tractability results have been derived so far. However, constraint satisfaction comes in practice as a computation problem where the focus is either on finding one solution, or on enumerating all solutions, possibly projected to some given set of output variables. The paper investigates the structural tractability of the problem of enumerating (possibly projected) solutions, where tractability means here computable with polynomial delay (WPD), since in general exponentially many solutions may be computed. A general framework based on the notion of tree projection of hypergraphs is considered, which generalizes all known decomposition methods. Tractability results have been obtained both for classes of structures where output variables are part of their specification, and for classes of structures where computability WPD must be ensured for any possible set of output variables. These results are shown to be tight, by exhibiting dichotomies for classes of structures having bounded arity and where the tree decomposition method is considered.
SARA 2009: The Eighth Symposium on Abstraction, Reformulation and Approximation
Bulitko, Vadim (University of Alberta) | Beck, J. Christopher (University of Toronto)
The considerable interest in ARA techniques and the great diversity of the researchers involved had led to work on ARA being presented at many different venues. Consequently, there was a need to have a single forum where researchers of different backgrounds and disciplines could discuss their work on ARA. As a result, the Symposium on Abstraction, Reformulation, and Approximation (SARA) was established in 1994 after a series of workshops in 1988, 1990, and 1992. The current SARA, held at Lake Arrowhead, California, USA, on July 7-10, 2009, is the eighth in this series, following symposia in 1994, 1995, 1998, 2000, 2002, 2005, and 2007. Following a SARA tradition, this symposium brought together researchers with different backgrounds and facilitated lively discussions during and after the talks. There were 30 researchers from North and South America, Europe, and Australia. Additionally, SARA attendees were able to mingle and have fruitful discussions with members of the collocated Symposium on Combinatorial Search (SoCS). The collocation of SoCS was particularly useful in that many modern techniques in combinatorial search frequently utilize ARA methods. Finally, in addition to the regular and poster talks, there were three invited talks delivered by Jeff Orkin (Massachusetts Institute of Technology), Michael Genesereth (Stanford University), and Robert Holte (University of Alberta).
Solving Functional Constraints by Variable Substitution
Zhang, Yuanlin, Yap, Roland H. C.
Functional constraints and bi-functional constraints are an important constraint class in Constraint Programming (CP) systems, in particular for Constraint Logic Programming (CLP) systems. CP systems with finite domain constraints usually employ CSP-based solvers which use local consistency, for example, arc consistency. We introduce a new approach which is based instead on variable substitution. We obtain efficient algorithms for reducing systems involving functional and bi-functional constraints together with other non-functional constraints. It also solves globally any CSP where there exists a variable such that any other variable is reachable from it through a sequence of functional constraints. Our experiments on random problems show that variable elimination can significantly improve the efficiency of solving problems with functional constraints.
Using machine learning to make constraint solver implementation decisions
Kotthoff, Lars, Gent, Ian, Miguel, Ian
Programs to solve so-called constraint problems are complex pieces of software which require many design decisions to be made more or less arbitrarily by the implementer. These decisions affect the performance of the finished solver significantly. Once a design decision has been made, it cannot easily be reversed, although a different decision may be more appropriate for a particular problem. We investigate using machine learning to make these decisions automatically depending on the problem to solve with the alldifferent constraint as an example. Our system is capable of making non-trivial, multi-level decisions that improve over always making a default choice.
The Exact Closest String Problem as a Constraint Satisfaction Problem
We report (to our knowledge) the first evaluation of Constraint Satisfaction as a computational framework for solving closest string problems. We show that careful consideration of symbol occurrences can provide search heuristics that provide several orders of magnitude speedup at and above the optimal distance. We also report (to our knowledge) the first analysis and evaluation -- using any technique -- of the computational difficulties involved in the identification of all closest strings for a given input set. We describe algorithms for web-scale distributed solution of closest string problems, both purely based on AI backtrack search and also hybrid numeric-AI methods.