Goto

Collaborating Authors

 Constraint-Based Reasoning


Consistency and Random Constraint Satisfaction Models

arXiv.org Artificial Intelligence

In this paper, we study the possibility of designing non-trivial random CSP models by exploiting the intrinsic connection between structures and typical-case hardness. We show that constraint consistency, a notion that has been developed to improve the efficiency of CSP algorithms, is in fact the key to the design of random CSP models that have interesting phase transition behavior and guaranteed exponential resolution complexity without putting much restriction on the parameter of constraint tightness or the domain size of the problem. We propose a very flexible framework for constructing problem instances withinteresting behavior and develop a variety of concrete methods to construct specific random CSP models that enforce different levels of constraint consistency. A series of experimental studies with interesting observations are carried out to illustrate the effectiveness of introducing structural elements in random instances, to verify the robustness of our proposal, and to investigate features of some specific models based on our framework that are highly related to the behavior of backtracking search algorithms.


Supporting Temporal Reasoning by Mapping Calendar Expressions to Minimal Periodic Sets

arXiv.org Artificial Intelligence

In the recent years several research efforts have focused on the concept of time granularity and its applications. A first stream of research investigated the mathematical models behind the notion of granularity and the algorithms to manage temporal data based on those models. A second stream of research investigated symbolic formalisms providing a set of algebraic operators to define granularities in a compact and compositional way. However, only very limited manipulation algorithms have been proposed to operate directly on the algebraic representation making it unsuitable to use the symbolic formalisms in applications that need manipulation of granularities. This paper aims at filling the gap between the results from these two streams of research, by providing an efficient conversion from the algebraic representation to the equivalent low-level representation based on the mathematical models. In addition, the conversion returns a minimal representation in terms of period length. Our results have a major practical impact: users can more easily define arbitrary granularities in terms of algebraic operators, and then access granularity reasoning and other services operating efficiently on the equivalent, minimal low-level representation. As an example, we illustrate the application to temporal constraint reasoning with multiple granularities. From a technical point of view, we propose an hybrid algorithm that interleaves the conversion of calendar subexpressions into periodical sets with the minimization of the period length. The algorithm returns set-based granularity representations having minimal period length, which is the most relevant parameter for the performance of the considered reasoning services. Extensive experimental work supports the techniques used in the algorithm, and shows the efficiency and effectiveness of the algorithm.


Uncertainty in Soft Temporal Constraint Problems:A General Framework and Controllability Algorithms forThe Fuzzy Case

arXiv.org Artificial Intelligence

In real-life temporal scenarios, uncertainty and preferences are often essential and coexisting aspects. We present a formalism where quantitative temporal constraints with both preferences and uncertainty can be defined. We show how three classical notions of controllability (that is, strong, weak, and dynamic), which have been developed for uncertain temporal problems, can be generalized to handle preferences as well. After defining this general framework, we focus on problems where preferences follow the fuzzy approach, and with properties that assure tractability. For such problems, we propose algorithms to check the presence of the controllability properties. In particular, we show that in such a setting dealing simultaneously with preferences and uncertainty does not increase the complexity of controllability testing. We also develop a dynamic execution algorithm, of polynomial complexity, that produces temporal plans under uncertainty that are optimal with respect to fuzzy preferences.


Set Intersection and Consistency in Constraint Networks

arXiv.org Artificial Intelligence

In this paper, we show that there is a close relation between consistency in a constraint network and set intersection. A proof schema is provided as a generic way to obtain consistency properties from properties on set intersection. This approach not only simplifies the understanding of and unifies many existing consistency results, but also directs the study of consistency to that of set intersection properties in many situations, as demonstrated by the results on the convexity and tightness of constraints in this paper. Specifically, we identify a new class of tree convex constraints where local consistency ensures global consistency. This generalizes row convex constraints. Various consistency results are also obtained on constraint networks where only some, in contrast to all in the existing work,constraints are tight.


Binary Encodings of Non-binary Constraint Satisfaction Problems: Algorithms and Experimental Results

arXiv.org Artificial Intelligence

A non-binary Constraint Satisfaction Problem (CSP) can be solved directly using extended versions of binary techniques. Alternatively, the non-binary problem can be translated into an equivalent binary one. In this case, it is generally accepted that the translated problem can be solved by applying well-established techniques for binary CSPs. In this paper we evaluate the applicability of the latter approach. We demonstrate that the use of standard techniques for binary CSPs in the encodings of non-binary problems is problematic and results in models that are very rarely competitive with the non-binary representation. To overcome this, we propose specialized arc consistency and search algorithms for binary encodings, and we evaluate them theoretically and empirically. We consider three binary representations; the hidden variable encoding, the dual encoding, and the double encoding. Theoretical and empirical results show that, for certain classes of non-binary constraints, binary encodings are a competitive option, and in many cases, a better one than the non-binary representation.


Reconstruction of sequential data with density models

arXiv.org Machine Learning

We introduce the problem of reconstructing a sequence of multidimensional real vectors where some of the data are missing. This problem contains regression and mapping inversion as particular cases where the pattern of missing data is independent of the sequence index. The problem is hard because it involves possibly multivalued mappings at each vector in the sequence, where the missing variables can take more than one value given the present variables; and the set of missing variables can vary from one vector to the next. To solve this problem, we propose an algorithm based on two redundancy assumptions: vector redundancy (the data live in a low-dimensional manifold), so that the present variables constrain the missing ones; and sequence redundancy (e.g. continuity), so that consecutive vectors constrain each other. We capture the low-dimensional nature of the data in a probabilistic way with a joint density model, here the generative topographic mapping, which results in a Gaussian mixture. Candidate reconstructions at each vector are obtained as all the modes of the conditional distribution of missing variables given present variables. The reconstructed sequence is obtained by minimising a global constraint, here the sequence length, by dynamic programming. We present experimental results for a toy problem and for inverse kinematics of a robot arm.


Breaking Instance-Independent Symmetries In Exact Graph Coloring

arXiv.org Artificial Intelligence

Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature.


Solving Set Constraint Satisfaction Problems using ROBDDs

arXiv.org Artificial Intelligence

In this paper we present a new approach to modeling finite set domain constraint problems using Reduced Ordered Binary Decision Diagrams (ROBDDs). We show that it is possible to construct an efficient set domain propagator which compactly represents many set domains and set constraints using ROBDDs. We demonstrate that the ROBDD-based approach provides unprecedented flexibility in modeling constraint satisfaction problems, leading to performance improvements. We also show that the ROBDD-based modeling approach can be extended to the modeling of integer and multiset constraint problems in a straightforward manner. Since domain propagation is not always practical, we also show how to incorporate less strict consistency notions into the ROBDD framework, such as set bounds, cardinality bounds and lexicographic bounds consistency. Finally, we present experimental results that demonstrate the ROBDD-based solver performs better than various more conventional constraint solvers on several standard set constraint problems.


Structure-Based Local Search Heuristics for Circuit-Level Boolean Satisfiability

arXiv.org Artificial Intelligence

This work focuses on improving state-of-the-art in stochastic local search (SLS) for solving Boolean satisfiability (SAT) instances arising from real-world industrial SAT application domains. The recently introduced SLS method CRSat has been shown to noticeably improve on previously suggested SLS techniques in solving such real-world instances by combining justification-based local search with limited Boolean constraint propagation on the non-clausal formula representation form of Boolean circuits. In this work, we study possibilities of further improving the performance of CRSat by exploiting circuit-level structural knowledge for developing new search heuristics for CRSat. To this end, we introduce and experimentally evaluate a variety of search heuristics, many of which are motivated by circuit-level heuristics originally developed in completely different contexts, e.g., for electronic design automation applications. To the best of our knowledge, most of the heuristics are novel in the context of SLS for SAT and, more generally, SLS for constraint satisfaction problems.


On the Practical use of Variable Elimination in Constraint Optimization Problems: 'Still-life' as a Case Study

arXiv.org Artificial Intelligence

Variable elimination is a general technique for constraint processing. It is often discarded because of its high space complexity. However, it can be extremely useful when combined with other techniques. In this paper we study the applicability of variable elimination to the challenging problem of finding still-lifes. We illustrate several alternatives: variable elimination as a stand-alone algorithm, interleaved with search, and as a source of good quality lower bounds. We show that these techniques are the best known option both theoretically and empirically. In our experiments we have been able to solve the n=20 instance, which is far beyond reach with alternative approaches.