Goto

Collaborating Authors

 Constraint-Based Reasoning


The RegularGcc Matrix Constraint

arXiv.org Artificial Intelligence

We study propagation of the RegularGcc global constraint. This ensures that each row of a matrix of decision variables satisfies a Regular constraint, and each column satisfies a Gcc constraint. On the negative side, we prove that propagation is NP-hard even under some strong restrictions (e.g. just 3 values, just 4 states in the automaton, or just 5 columns to the matrix). On the positive side, we identify two cases where propagation is fixed parameter tractable. In addition, we show how to improve propagation over a simple decomposition into separate Regular and Gcc constraints by identifying some necessary but insufficient conditions for a solution. We enforce these conditions with some additional weighted row automata. Experimental results demonstrate the potential of these methods on some standard benchmark problems.


Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object Model Learning

Neural Information Processing Systems

We propose a novel inference framework for finding maximal cliques in a weighted graph that satisfy hard constraints. The constraints specify the graph nodes that must belong to the solution as well as mutual exclusions of graph nodes, i.e., sets of nodes that cannot belong to the same solution. The proposed inference is based on a novel particle filter algorithm with state permeations. We apply the inference framework to a challenging problem of learning part-based, deformable object models. Two core problems in the learning framework, matching of image patches and finding salient parts, are formulated as two instances of the problem of finding maximal cliques with hard constraints. Our learning framework yields discriminative part based object models that achieve very good detection rate, and outperform other methods on object classes with large deformation.


Extracting Topological Information from Spatial Constraint Databases

AAAI Conferences

This paper presents an efficient topology information extraction algorithm that is capable of extracting primary topological relations, such as, interior, boundary, and exterior from a single spatial or spatio-temporal object stored in a linear constraint database. Any non-spatial constraints will be preserved so that the input spatio-temporal objectโ€™s temporal constraints will not be sacrificed by the algorithm. Based on the three primary topological relations, more topological relations between regions, lines, and points can be defined in a constraint database for future spatial analysis.


A Constraint Programming Approach for Solving a Queueing Control Problem

arXiv.org Artificial Intelligence

In a facility with front room and back room operations, it is useful to switch workers between the rooms in order to cope with changing customer demand. Assuming stochastic customer arrival and service times, we seek a policy for switching workers such that the expected customer waiting time is minimized while the expected back room staffing is sufficient to perform all work. Three novel constraint programming models and several shaving procedures for these models are presented. Experimental results show that a model based on closed-form expressions together with a combination of shaving procedures is the most efficient. This model is able to find and prove optimal solutions for many problem instances within a reasonable run-time. Previously, the only available approach was a heuristic algorithm. Furthermore, a hybrid method combining the heuristic and the best constraint programming method is shown to perform as well as the heuristic in terms of solution quality over time, while achieving the same performance in terms of proving optimality as the pure constraint programming model. This is the first work of which we are aware that solves such queueing-based problems with constraint programming.


Recommendation Technologies for Configurable Products

AI Magazine

State of the art recommender systems support users in the selection of items from a predefined assortment (for example, movies, books, and songs). In contrast to an explicit definition of each individual item, configurable products such as computers, financial service portfolios, and cars are repreยฌsented in the form of a configuration knowledge base that describes the properties of allowed instances. Although the knowledge representation used is different compared to non-confiยฌgurable products, the decision support requirements remain the same: users have to be supported in finding a solution that fits their wishes and needs. In this article we show how recommendation technologies can be applied for supporting the configuration of products. In addition to existing approaches we discuss relevant issues for future research.


Modelling Constraint Solver Architecture Design as a Constraint Problem

arXiv.org Artificial Intelligence

Designing component-based constraint solvers is a complex problem. Some components are required, some are optional and there are interdependencies between the components. Because of this, previous approaches to solver design and modification have been ad-hoc and limited. We present a system that transforms a description of the components and the characteristics of the target constraint solver into a constraint problem. Solving this problem yields the description of a valid solver. Our approach represents a significant step towards the automated design and synthesis of constraint solvers that are specialised for individual constraint problem classes or instances.


Resource Allocation Among Agents with MDP-Induced Preferences

arXiv.org Artificial Intelligence

Allocating scarce resources among agents to maximize global utility is, in general, computationally challenging. We focus on problems where resources enable agents to execute actions in stochastic environments, modeled as Markov decision processes (MDPs), such that the value of a resource bundle is defined as the expected value of the optimal MDP policy realizable given these resources. We present an algorithm that simultaneously solves the resource-allocation and the policy-optimization problems. This allows us to avoid explicitly representing utilities over exponentially many resource bundles, leading to drastic (often exponential) reductions in computational complexity. We then use this algorithm in the context of self-interested agents to design a combinatorial auction for allocating resources. We empirically demonstrate the effectiveness of our approach by showing that it can, in minutes, optimally solve problems for which a straightforward combinatorial resource-allocation technique would require the agents to enumerate up to 2^100 resource bundles and the auctioneer to solve an NP-complete problem with an input of that size.


An Approach to Temporal Planning and Scheduling in Domains with Predictable Exogenous Events

arXiv.org Artificial Intelligence

The treatment of exogenous events in planning is practically important in many real-world domains where the preconditions of certain plan actions are affected by such events. In this paper we focus on planning in temporal domains with exogenous events that happen at known times, imposing the constraint that certain actions in the plan must be executed during some predefined time windows. When actions have durations, handling such temporal constraints adds an extra difficulty to planning. We propose an approach to planning in these domains which integrates constraint-based temporal reasoning into a graph-based planning framework using local search. Our techniques are implemented in a planner that took part in the 4th International Planning Competition (IPC-4). A statistical analysis of the results of IPC-4 demonstrates the effectiveness of our approach in terms of both CPU-time and plan quality. Additional experiments show the good performance of the temporal reasoning techniques integrated into our planner.


An Algebraic Graphical Model for Decision with Uncertainties, Feasibilities, and Utilities

arXiv.org Artificial Intelligence

Numerous formalisms and dedicated algorithms have been designed in the last decades to model and solve decision making problems. Some formalisms, such as constraint networks, can express "simple" decision problems, while others are designed to take into account uncertainties, unfeasible decisions, and utilities. Even in a single formalism, several variants are often proposed to model different types of uncertainty (probability, possibility...) or utility (additive or not). In this article, we introduce an algebraic graphical model that encompasses a large number of such formalisms: (1) we first adapt previous structures from Friedman, Chu and Halpern for representing uncertainty, utility, and expected utility in order to deal with generic forms of sequential decision making; (2) on these structures, we then introduce composite graphical models that express information via variables linked by "local" functions, thanks to conditional independence; (3) on these graphical models, we finally define a simple class of queries which can represent various scenarios in terms of observabilities and controllabilities. A natural decision-tree semantics for such queries is completed by an equivalent operational semantics, which induces generic algorithms. The proposed framework, called the Plausibility-Feasibility-Utility (PFU) framework, not only provides a better understanding of the links between existing formalisms, but it also covers yet unpublished frameworks (such as possibilistic influence diagrams) and unifies formalisms such as quantified boolean formulas and influence diagrams. Our backtrack and variable elimination generic algorithms are a first step towards unified algorithms.


Proactive Algorithms for Job Shop Scheduling with Probabilistic Durations

arXiv.org Artificial Intelligence

Most classical scheduling formulations assume a fixed and known duration for each activity. In this paper, we weaken this assumption, requiring instead that each duration can be represented by an independent random variable with a known mean and variance. The best solutions are ones which have a high probability of achieving a good makespan. We first create a theoretical framework, formally showing how Monte Carlo simulation can be combined with deterministic scheduling algorithms to solve this problem. We propose an associated deterministic scheduling problem whose solution is proved, under certain conditions, to be a lower bound for the probabilistic problem. We then propose and investigate a number of techniques for solving such problems based on combinations of Monte Carlo simulation, solutions to the associated deterministic problem, and either constraint programming or tabu search. Our empirical results demonstrate that a combination of the use of the associated deterministic problem and Monte Carlo simulation results in algorithms that scale best both in terms of problem size and uncertainty. Further experiments point to the correlation between the quality of the deterministic solution and the quality of the probabilistic solution as a major factor responsible for this success.