Constraint-Based Reasoning
Symmetry Breaking Constraints: Recent Results
Symmetry is an important problem in many combinatorial problems. One way of dealing with symmetry is to add constraints that eliminate symmetric solutions. We survey recent results in this area, focusing especially on two common and useful cases: symmetry breaking constraints for row and column symmetry, and symmetry breaking constraints for eliminating value symmetry
Unit contradiction versus unit propagation
Some aspects of the result of applying unit resolution on a CNF formula can be formalized as functions with domain a set of partial truth assignments. We are interested in two ways for computing such functions, depending on whether the result is the production of the empty clause or the assignment of a variable with a given truth value. We show that these two models can compute the same functions with formulae of polynomially related sizes, and we explain how this result is related to the CNF encoding of Boolean constraints.
Global preferential consistency for the topological sorting-based maximal spanning tree problem
We introduce a new type of fully computable problems, for DSS dedicated to maximal spanning tree problems, based on deduction and choice: preferential consistency problems. To show its interest, we describe a new compact representation of preferences specific to spanning trees, identifying an efficient maximal spanning tree sub-problem. Next, we compare this problem with the Pareto-based multiobjective one. And at last, we propose an efficient algorithm solving the associated preferential consistency problem.
Search Combinators
Schrijvers, Tom, Tack, Guido, Wuille, Pieter, Samulowitz, Horst, Stuckey, Peter J.
The ability to model search in a constraint solver can be an essential asset for solving combinatorial problems. However, existing infrastructure for defining search heuristics is often inadequate. Either modeling capabilities are extremely limited or users are faced with a general-purpose programming language whose features are not tailored towards writing search heuristics. As a result, major improvements in performance may remain unexplored. This article introduces search combinators, a lightweight and solver-independent method that bridges the gap between a conceptually simple modeling language for search (high-level, functional and naturally compositional) and an efficient implementation (low-level, imperative and highly non-modular). By allowing the user to define application-tailored search strategies from a small set of primitives, search combinators effectively provide a rich domain-specific language (DSL) for modeling search to the user. Remarkably, this DSL comes at a low implementation cost to the developer of a constraint solver. The article discusses two modular implementation approaches and shows, by empirical evaluation, that search combinators can be implemented without overhead compared to a native, direct implementation in a constraint solver.
A Logical Characterization of Constraint-Based Causal Discovery
We present a novel approach to constraint-based causal discovery, that takes the form of straightforward logical inference, applied to a list of simple, logical statements about causal relations that are derived directly from observed (in)dependencies. It is both sound and complete, in the sense that all invariant features of the corresponding partial ancestral graph (PAG) are identified, even in the presence of latent variables and selection bias. The approach shows that every identifiable causal relation corresponds to one of just two fundamental forms. More importantly, as the basic building blocks of the method do not rely on the detailed (graphical) structure of the corresponding PAG, it opens up a range of new opportunities, including more robust inference, detailed accountability, and application to large models.
Distributed Anytime MAP Inference
van de Ven, Joop, Ramos, Fabio
We present a distributed anytime algorithm for performing MAP inference in graphical models. The problem is formulated as a linear programming relaxation over the edges of a graph. The resulting program has a constraint structure that allows application of the Dantzig-Wolfe decomposition principle. Subprograms are defined over individual edges and can be computed in a distributed manner. This accommodates solutions to graphs whose state space does not fit in memory. The decomposition master program is guaranteed to compute the optimal solution in a finite number of iterations, while the solution converges monotonically with each iteration. Formulating the MAP inference problem as a linear program allows additional (global) constraints to be defined; something not possible with message passing algorithms. Experimental results show that our algorithm's solution quality outperforms most current algorithms and it scales well to large problems.
Compactness and Its Implications for Qualitative Spatial and Temporal Reasoning
Huang, Jinbo (NICTA and Australian National University)
A constraint satisfaction problem has compactness if any infinite set of constraints is satisfiable whenever all its finite subsets are satisfiable. We prove a sufficient condition for compactness, which holds for a range of problems including those based on the well-known Interval Algebra (IA) and RCC8. Furthermore, we show that compactness leads to a useful necessary and sufficient condition for the recently introduced patchwork property, namely that patchwork holds exactly when every satisfiable finite network (i.e., set of constraints) has a canonical solution, that is, a solution that can be extended to a solution for any satisfiable finite extension of the network. Applying these general theorems to qualitative reasoning, we obtain important new results as well as significant strengthenings of previous results regarding IA, RCC8, and their fragments and extensions. In particular, we show that all the maximal tractable fragments of IA and RCC8 (containing the base relations) have patchwork and canonical solutions as long as networks are algebraically closed.
Modification of the Elite Ant System in Order to Avoid Local Optimum Points in the Traveling Salesman Problem
Yousefikhoshbakht, Majid, Didehvar, Farzad, Rahmati, Farhad
This article presents a new algorithm which is a modified version of the elite ant system (EAS) algorithm. The new version utilizes an effective criterion for escaping from the local optimum points. In contrast to the classical EAC algorithms, the proposed algorithm uses only a global updating, which will increase pheromone on the edges of the best (i.e. the shortest) route and will at the same time decrease the amount of pheromone on the edges of the worst (i.e. the longest) route. In order to assess the efficiency of the new algorithm, some standard traveling salesman problems (TSPs) were studied and their results were compared with classical EAC and other well-known meta-heuristic algorithms. The results indicate that the proposed algorithm has been able to improve the efficiency of the algorithms in all instances and it is competitive with other algorithms.
Peek Arc Consistency
This paper studies peek arc consistency, a reasoning technique that extends the well-known arc consistency technique for constraint satisfaction. In contrast to other more costly extensions of arc consistency that have been studied in the literature, peek arc consistency requires only linear space and quadratic time and can be parallelized in a straightforward way such that it runs in linear time with a linear number of processors. We demonstrate that for various constraint languages, peek arc consistency gives a polynomial-time decision procedure for the constraint satisfaction problem. We also present an algebraic characterization of those constraint languages that can be solved by peek arc consistency, and study the robustness of the algorithm.
A Dichotomy for 2-Constraint Forbidden CSP Patterns
Cooper, Martin C., Escamocher, Guillaume
Although the CSP (constraint satisfaction problem) is NP-complete, even in the case when all constraints are binary, certain classes of instances are tractable. We study classes of instances defined by excluding subproblems. This approach has recently led to the discovery of novel tractable classes. The complete characterisation of all tractable classes defined by forbidding patterns (where a pattern is simply a compact representation of a set of subproblems) is a challenging problem. We demonstrate a dichotomy in the case of forbidden patterns consisting of either one or two constraints. This has allowed us to discover new tractable classes including, for example, a novel generalisation of 2SAT.