Constraint-Based Reasoning

Top 20 Best Free Books To Get Jump Started with Artificial Intelligence


This is one of only a handful couple of writings that consolidates three fundamental postulations in the investigation of rationale programming: the logic that gives logic programs their extraordinary character: the act of programming viably utilizing the logic; and the productive usage of logic software on PCs.

Phase transition in the knapsack problem Artificial Intelligence

We examine the phase transition phenomenon for the Knapsack problem from both a computational and a human perspective. We first provide, via an empirical and a theoretical analysis, a characterization of the phenomenon in terms of two instance properties; normalised capacity and normalised profit. Then, we show evidence that average time spent by human decision makers in solving an instance peaks near the phase transition. Given the ubiquity of the Knapsack problem in every-day life, a better understanding of its structure can improve our understanding not only of computational techniques but also of human behavior, including the use and development of heuristics and occurrence of biases.

A Constraint-based Encoding for Domain-Independent Temporal Planning Artificial Intelligence

We present a general constraint-based encoding for domain-independent task planning. Task planning is characterized by causal relationships expressed as conditions and effects of optional actions. Possible actions are typically represented by templates, where each template can be instantiated into a number of primitive actions. While most previous work for domain-independent task planning has focused on primitive actions in a state-oriented view, our encoding uses a fully lifted representation at the level of action templates. It follows a time-oriented view in the spirit of previous work in constraint-based scheduling. As a result, the proposed encoding is simple and compact as it grows with the number of actions in a solution plan rather than the number of possible primitive actions. When solved with an SMT solver, we show that the proposed encoding is slightly more efficient than state-of-the-art methods on temporally constrained planning benchmarks while clearly outperforming other fully constraint-based approaches.

CASP Solutions for Planning in Hybrid Domains Artificial Intelligence

CASP is an extension of ASP that allows for numerical constraints to be added in the rules. PDDL+ is an extension of the PDDL standard language of automated planning for modeling mixed discrete-continuous dynamics. In this paper, we present CASP solutions for dealing with PDDL+ problems, i.e., encoding from PDDL+ to CASP, and extensions to the algorithm of the EZCSP CASP solver in order to solve CASP programs arising from PDDL+ domains. An experimental analysis, performed on well-known linear and non-linear variants of PDDL+ domains, involving various configurations of the EZCSP solver, other CASP solvers, and PDDL+ planners, shows the viability of our solution.

Augmenting Stream Constraint Programming with Eventuality Conditions Artificial Intelligence

Stream constraint programming is a recent addition to the family of constraint programming frameworks, where variable domains are sets of infinite streams over finite alphabets. Previous works showed promising results for its applicability to real-world planning and control problems. In this paper, motivated by the modelling of planning applications, we improve the expressiveness of the framework by introducing 1) the "until" constraint, a new construct that is adapted from Linear Temporal Logic and 2) the @ operator on streams, a syntactic sugar for which we provide a more efficient solving algorithm over simple desugaring. For both constructs, we propose corresponding novel solving algorithms and prove their correctness. We present competitive experimental results on the Missionaries and Cannibals logic puzzle and a standard path planning application on the grid, by comparing with Apt and Brand's method for verifying eventuality conditions using a CP approach.

Selecting Representative Examples for Program Synthesis Artificial Intelligence

Program synthesis is a class of regression problems where one seeks a solution, in the form of a source-code program, mapping the inputs to their corresponding outputs exactly. Due to its precise and combinatorial nature, program synthesis is commonly formulated as a constraint satisfaction problem, where input-output examples are encoded as constraints and solved with a constraint solver. A key challenge of this formulation is scalability: while constraint solvers work well with a few well-chosen examples, a large set of examples can incur significant overhead in both time and memory. We describe a method to discover a subset of examples that is both small and representative: the subset is constructed iteratively, using a neural network to predict the probability of unchosen examples conditioned on the chosen examples in the subset, and greedily adding the least probable example. We empirically evaluate the representativeness of the subsets constructed by our method, and demonstrate such subsets can significantly improve synthesis time and stability.

Rewriting Constraint Models with Metamodels

AAAI Conferences

An important challenge in constraint programming is to rewrite constraint models into executable programs calculating the solutions. This phase of constraint processing may require translations between constraint programming languages, transformations of constraint representations, model optimizations, and tuning of solving strategies. In this paper, we introduce a pivot metamodel describing the common features of constraint models including different kinds of constraints, statements like conditionals and loops, and other first-class elements like object classes and predicates. This metamodel is general enough to cope with the constructions of many languages, from object-oriented modeling languages to logic languages, but it is independent from them. The rewriting operations manipulate metamodel instances apart from languages. As a consequence, the rewriting operations apply whatever languages are selected and they are able to manage model semantic information. A bridge is created between the metamodel space and languages using parsing techniques. Tools from the software engineering world can be useful to implement this framework.

Generic CP-Supported CMSA for Binary Integer Linear Programs Artificial Intelligence

Construct, Merge, Solve and Adapt (CMSA) is a general hybrid metaheuristic for solving combinatorial optimization problems. At each iteration, CMSA (1) constructs feasible solutions to the tackled problem instance in a probabilistic way and (2) solves a reduced problem instance (if possible) to optimality. The construction of feasible solutions is hereby problem-specific, usually involving a fast greedy heuristic. The goal of this paper is to design a problem-agnostic CMSA variant whose exclusive input is an integer linear program (ILP). In order to reduce the complexity of this task, the current study is restricted to binary ILPs. In addition to a basic problem-agnostic CMSA variant, we also present an extended version that makes use of a constraint propagation engine for constructing solutions. The results show that our technique is able to match the upper bounds of the standalone application of CPLEX in the context of rather easy-to-solve instances, while it generally outperforms the standalone application of CPLEX in the context of hard instances. Moreover, the results indicate that the support of the constraint propagation engine is useful in the context of problems for which finding feasible solutions is rather difficult.

Amazon's Jeff Bezos says we need to leave Earth to survive. First stop: a city on the moon


SAN FRANCISCO --Amazon CEO Jeff Bezos says humans have to leave Earth for survival, and we can make our first step by building a city on the moon. Without a move into space, society will stop growing because of environmental constraints. Only by leaving Earth and moving into the stars will we be able to survive, the founder of Blue Origin, a privately funded aerospace manufacturer and spaceflight services company, said in Los Angeles on Friday. Bezos spoke at the International Space Development Conference, where he received the National Space Society's Gerard K. O'Neill Memorial Award for Space Settlement Advocacy. Since his earliest days, Bezos has been fixated on space and space travel.

Automating Personnel Rostering by Learning Constraints Using Tensors Artificial Intelligence

Many problems in operations research require that constraints be specified in the model. Determining the right constraints is a hard and laborsome task. We propose an approach to automate this process using artificial intelligence and machine learning principles. So far there has been only little work on learning constraints within the operations research community. We focus on personnel rostering and scheduling problems in which there are often past schedules available and show that it is possible to automatically learn constraints from such examples. To realize this, we adapted some techniques from the constraint programming community and we have extended them in order to cope with multidimensional examples. The method uses a tensor representation of the example, which helps in capturing the dimensionality as well as the structure of the example, and applies tensor operations to find the constraints that are satisfied by the example. To evaluate the proposed algorithm, we used constraints from the Nurse Rostering Competition and generated solutions that satisfy these constraints; these solutions were then used as examples to learn constraints. Experiments demonstrate that the proposed algorithm is capable of producing human readable constraints that capture the underlying characteristics of the examples.