Collaborating Authors

Constraint-Based Reasoning

Hot papers on arXiv from the past month: September 2021


Comparing the visual quality of generated frames. From Diverse Generation from a Single Video Made Possible. Reproduced under a CC BY 4.0 license. Here are the most tweeted papers that were uploaded onto arXiv during September 2021. Results are powered by Arxiv Sanity Preserver. Abstract: Generative adversary network (GAN) generated high-realistic human faces have been used as profile images for fake social media accounts and are visually challenging to discern from real ones.

Intel unveils second-generation neuromorphic computing chip


The Transform Technology Summits start October 13th with Low-Code/No Code: Enabling Enterprise Agility. Intel today announced a major update to its neuromorphic computing program, including a second-generation chip called Loihi 2 and Lava, an open-source framework for developing "neuro-inspired" applications. The company is now offering two Loihi 2-based neuromorphic systems -- Oheo Gulch and Kapoho Point -- through a cloud service to members of the Intel Neuromorphic Research Community (INRC) and Lava via GitHub for free. Along with Intel, researchers at IBM, HP, MIT, Purdue, and Stanford hope to leverage neuromorphic computing -- circuits that mimic the human nervous system's biology -- to develop supercomputers 1,000 times more powerful than any today. Custom-designed neuromorphic chips excel at constraint satisfaction problems, which require evaluating a large number of potential solutions to identify the one or few that satisfy specific constraints.

Constrained Optimization with Qualitative Preferences Artificial Intelligence

The Conditional Preference Network (CP-net) graphically represents user's qualitative and conditional preference statements under the ceteris paribus interpretation. The constrained CP-net is an extension of the CP-net, to a set of constraints. The existing algorithms for solving the constrained CP-net require the expensive dominance testing operation. We propose three approaches to tackle this challenge. In our first solution, we alter the constrained CP-net by eliciting additional relative importance statements between variables, in order to have a total order over the outcomes. We call this new model, the constrained Relative Importance Network (constrained CPR-net). Consequently, We show that the Constrained CPR-net has one single optimal outcome (assuming the constrained CPR-net is consistent) that we can obtain without dominance testing. In our second solution, we extend the Lexicographic Preference Tree (LP-tree) to a set of constraints. Then, we propose a recursive backtrack search algorithm, that we call Search-LP, to find the most preferable outcome. We prove that the first feasible outcome returned by Search-LP (without dominance testing) is also preferable to any other feasible outcome. Finally, in our third solution, we preserve the semantics of the CP-net and propose a divide and conquer algorithm that compares outcomes according to dominance testing.

Exact Learning of Qualitative Constraint Networks from Membership Queries Artificial Intelligence

A Qualitative Constraint Network (QCN) is a constraint graph for representing problems under qualitative temporal and spatial relations, among others. More formally, a QCN includes a set of entities, and a list of qualitative constraints defining the possible scenarios between these entities. These latter constraints are expressed as disjunctions of binary relations capturing the (incomplete) knowledge between the involved entities. QCNs are very effective in representing a wide variety of real-world applications, including scheduling and planning, configuration and Geographic Information Systems (GIS). It is however challenging to elicit, from the user, the QCN representing a given problem. To overcome this difficulty in practice, we propose a new algorithm for learning, through membership queries, a QCN from a non expert. In this paper, membership queries are asked in order to elicit temporal or spatial relationships between pairs of temporal or spatial entities. In order to improve the time performance of our learning algorithm in practice, constraint propagation, through transitive closure, as well as ordering heuristics, are enforced. The goal here is to reduce the number of membership queries needed to reach the target QCN. In order to assess the practical effect of constraint propagation and ordering heuristics, we conducted several experiments on randomly generated temporal and spatial constraint network instances. The results of the experiments are very encouraging and promising.

Making Human-Like Trade-offs in Constrained Environments by Learning from Demonstrations Artificial Intelligence

Many real-life scenarios require humans to make difficult trade-offs: do we always follow all the traffic rules or do we violate the speed limit in an emergency? These scenarios force us to evaluate the trade-off between collective norms and our own personal objectives. To create effective AI-human teams, we must equip AI agents with a model of how humans make trade-offs in complex, constrained environments. These agents will be able to mirror human behavior or to draw human attention to situations where decision making could be improved. To this end, we propose a novel inverse reinforcement learning (IRL) method for learning implicit hard and soft constraints from demonstrations, enabling agents to quickly adapt to new settings. In addition, learning soft constraints over states, actions, and state features allows agents to transfer this knowledge to new domains that share similar aspects. We then use the constraint learning method to implement a novel system architecture that leverages a cognitive model of human decision making, multi-alternative decision field theory (MDFT), to orchestrate competing objectives. We evaluate the resulting agent on trajectory length, number of violated constraints, and total reward, demonstrating that our agent architecture is both general and achieves strong performance. Thus we are able to capture and replicate human-like trade-offs from demonstrations in environments when constraints are not explicit.

Index of Best AI/Machine Learning Resources


Artificial Intelligence/Machine Learning field is getting a lot of attention right now, and knowing where to start can be a little difficult. I've been dabbling in this field, so I thought of curating the best resources in one place. All of these are curated based on if it's an inspiring read or a valuable resource. I hope this curated list help you get started on what you need to know about AI/Machine Learning on a technical level. Design intelligent agents to solve real-world problems including, search, games, machine learning, logic, and constraint satisfaction problems.

A Plug-and-Play Method for Controlled Text Generation Artificial Intelligence

Large pre-trained language models have repeatedly shown their ability to produce fluent text. Yet even when starting from a prompt, generation can continue in many plausible directions. Current decoding methods with the goal of controlling generation, e.g., to ensure specific words are included, either require additional models or fine-tuning, or work poorly when the task at hand is semantically unconstrained, e.g., story generation. In this work, we present a plug-and-play decoding method for controlled language generation that is so simple and intuitive, it can be described in a single sentence: given a topic or keyword, we add a shift to the probability distribution over our vocabulary towards semantically similar words. We show how annealing this distribution can be used to impose hard constraints on language generation, something no other plug-and-play method is currently able to do with SOTA language generators. Despite the simplicity of this approach, we see it works incredibly well in practice: decoding from GPT-2 leads to diverse and fluent sentences while guaranteeing the appearance of given guide words. We perform two user studies, revealing that (1) our method outperforms competing methods in human evaluations; and (2) forcing the guide words to appear in the generated text has no impact on the fluency of the generated text.

Configuring Multiple Instances with Multi-Configuration Artificial Intelligence

Configuration is a successful application area of Artificial Intelligence. In the majority of the cases, configuration systems focus on configuring one solution (configuration) that satisfies the preferences of a single user or a group of users. In this paper, we introduce a new configuration approach - multi-configuration - that focuses on scenarios where the outcome of a configuration process is a set of configurations. Example applications thereof are the configuration of personalized exams for individual students, the configuration of project teams, reviewer-to-paper assignment, and hotel room assignments including individualized city trips for tourist groups. For multi-configuration scenarios, we exemplify a constraint satisfaction problem representation in the context of configuring exams. The paper is concluded with a discussion of open issues for future work.

The Horn Non-Clausal Class and its Polynomiality Artificial Intelligence

The expressiveness of propositional non-clausal (NC) formulas is exponentially richer than that of clausal formulas. Yet, clausal efficiency outperforms non-clausal one. Indeed, a major weakness of the latter is that, while Horn clausal formulas, along with Horn algorithms, are crucial for the high efficiency of clausal reasoning, no Horn-like formulas in non-clausal form had been proposed. To overcome such weakness, we define the hybrid class $\mathbb{H_{NC}}$ of Horn Non-Clausal (Horn-NC) formulas, by adequately lifting the Horn pattern to NC form, and argue that $\mathbb{H_{NC}}$, along with future Horn-NC algorithms, shall increase non-clausal efficiency just as the Horn class has increased clausal efficiency. Secondly, we: (i) give the compact, inductive definition of $\mathbb{H_{NC}}$; (ii) prove that syntactically $\mathbb{H_{NC}}$ subsumes the Horn class but semantically both classes are equivalent, and (iii) characterize the non-clausal formulas belonging to $\mathbb{H_{NC}}$. Thirdly, we define the Non-Clausal Unit-Resolution calculus, $UR_{NC}$, and prove that it checks the satisfiability of $\mathbb{H_{NC}}$ in polynomial time. This fact, to our knowledge, makes $\mathbb{H_{NC}}$ the first characterized polynomial class in NC reasoning. Finally, we prove that $\mathbb{H_{NC}}$ is linearly recognizable, and also that it is both strictly succincter and exponentially richer than the Horn class. We discuss that in NC automated reasoning, e.g. satisfiability solving, theorem proving, logic programming, etc., can directly benefit from $\mathbb{H_{NC}}$ and $UR_{NC}$ and that, as a by-product of its proved properties, $\mathbb{H_{NC}}$ arises as a new alternative to analyze Horn functions and implication systems.

Learning to Regrasp by Learning to Place Artificial Intelligence

In this paper, we explore whether a robot can learn to regrasp a diverse set of objects to achieve various desired grasp poses. Regrasping is needed whenever a robot's current grasp pose fails to perform desired manipulation tasks. Endowing robots with such an ability has applications in many domains such as manufacturing or domestic services. Yet, it is a challenging task due to the large diversity of geometry in everyday objects and the high dimensionality of the state and action space. In this paper, we propose a system for robots to take partial point clouds of an object and the supporting environment as inputs and output a sequence of pick-and-place operations to transform an initial object grasp pose to the desired object grasp poses. The key technique includes a neural stable placement predictor and a regrasp graph based solution through leveraging and changing the surrounding environment. We introduce a new and challenging synthetic dataset for learning and evaluating the proposed approach. In this dataset, we show that our system is able to achieve 73.3% success rate of regrasping diverse objects.