Constraint-Based Reasoning
Generative Modelling of Structurally Constrained Graphs
Graph diffusion models have emerged as state-of-the-art techniques in graph generation; yet, integrating domain knowledge into these models remains challenging. Domain knowledge is particularly important in real-world scenarios, where invalid generated graphs hinder deployment in practical applications. Unconstrained and conditioned graph diffusion models fail to guarantee such domain-specific structural properties. We present ConStruct, a novel framework that enables graph diffusion models to incorporate hard constraints on specific properties, such as planarity or acyclicity. Our approach ensures that the sampled graphs remain within the domain of graphs that satisfy the specified property throughout the entire trajectory in both the forward and reverse processes. This is achieved by introducing an edge-absorbing noise model and a new projector operator. ConStruct demonstrates versatility across several structural and edge-deletion invariant constraints and achieves state-of-the-art performance for both synthetic benchmarks and attributed real-world datasets. For example, by incorporating planarity constraints in digital pathology graph datasets, the proposed method outperforms existing baselines, improving data validity by up to 71.1 percentage points.
Autoregressive Policy Optimization for Constrained Allocation Tasks
Allocation tasks represent a class of problems where a limited amount of resources must be allocated to a set of entities at each time step. Prominent examples of this task include portfolio optimization or distributing computational workloads across servers. Allocation tasks are typically bound by linear constraints describing practical requirements that have to be strictly fulfilled at all times. In portfolio optimization, for example, investors may be obligated to allocate less than 30% of the funds into a certain industrial sector in any investment period. Such constraints restrict the action space of allowed allocations in intricate ways, which makes learning a policy that avoids constraint violations difficult. In this paper, we propose a new method for constrained allocation tasks based on an autoregressive process to sequentially sample allocations for each entity. In addition, we introduce a novel de-biasing mechanism to counter the initial bias caused by sequential sampling. We demonstrate the superior performance of our approach compared to a variety of Constrained Reinforcement Learning (CRL) methods on three distinct constrained allocation tasks: portfolio optimization, computational workload distribution, and a synthetic allocation benchmark. Our code is available at: https://github.com/
Self-Labeling the Job Shop Scheduling Problem
This work proposes a self-supervised training strategy designed for combinatorial problems. An obstacle in applying supervised paradigms to such problems is the need for costly target solutions often produced with exact solvers. Inspired by semi-and self-supervised learning, we show that generative models can be trained by sampling multiple solutions and using the best one according to the problem objective as a pseudo-label. In this way, we iteratively improve the model generation capability by relying only on its self-supervision, eliminating the need for optimality information. We validate this Self-Labeling Improvement Method (SLIM) on the Job Shop Scheduling (JSP), a complex combinatorial problem that is receiving much attention from the neural combinatorial community. We propose a generative model based on the well-known Pointer Network and train it with SLIM. Experiments on popular benchmarks demonstrate the potential of this approach as the resulting models outperform constructive heuristics and state-of-the-art learning proposals for the JSP. Lastly, we prove the robustness of SLIM to various parameters and its generality by applying it to the Traveling Salesman Problem.
Learning to Handle Complex Constraints for Vehicle Routing Problems
Vehicle Routing Problems (VRPs) can model many real-world scenarios and often involve complex constraints. While recent neural methods excel in constructing solutions based on feasibility masking, they struggle with handling complex constraints, especially when obtaining the masking itself is NP-hard. In this paper, we propose a novel Proactive Infeasibility Prevention (PIP) framework to advance the capabilities of neural methods towards more complex VRPs. Our PIP integrates the Lagrangian multiplier as a basis to enhance constraint awareness and introduces preventative infeasibility masking to proactively steer the solution construction process. Moreover, we present PIP-D, which employs an auxiliary decoder and two adaptive strategies to learn and predict these tailored masks, potentially enhancing performance while significantly reducing computational costs during training. To verify our PIP designs, we conduct extensive experiments on the highly challenging Traveling Salesman Problem with Time Window (TSPTW), and TSP with Draft Limit (TSPDL) variants under different constraint hardness levels. Notably, our PIP is generic to boost many neural methods, and exhibits both a significant reduction in infeasible rate and a substantial improvement in solution quality.
Constrained Synthesis with Projected Diffusion Models
This paper introduces an approach to endow generative diffusion processes the ability to satisfy and certify compliance with constraints and physical principles. The proposed method recast the traditional sampling process of generative diffusion models as a constrained optimization problem, steering the generated data distribution to remain within a specified region to ensure adherence to the given constraints. These capabilities are validated on applications featuring both convex and challenging, non-convex, constraints as well as ordinary differential equations, in domains spanning from synthesizing new materials with precise morphometric properties, generating physics-informed motion, optimizing paths in planning scenarios, and human motion synthesis.
Achieving ร(1/ฮต) Sample Complexity for Constrained Markov Decision Process
We consider the reinforcement learning problem for the constrained Markov decision process (CMDP), which plays a central role in satisfying safety or resource constraints in sequential learning and decision-making. In this problem, we are given finite resources and a MDP with unknown transition probabilities. At each stage, we take an action, collecting a reward and consuming some resources, all assumed to be unknown and need to be learned over time. In this work, we take the first step towards deriving optimal problem-dependent guarantees for the CMDP problems.
Provably Safe Reinforcement Learning with Step-wise Violation Constraints Institute for Interdisciplinary Information Sciences, Tsinghua University
We investigate a novel safe reinforcement learning problem with step-wise violation constraints. Our problem differs from existing works in that we focus on stricter step-wise violation constraints and do not assume the existence of safe actions, making our formulation more suitable for safety-critical applications that need to ensure safety in all decision steps but may not always possess safe actions, e.g., robot control and autonomous driving.
Unity by Diversity: Improved Representation Learning for Multimodal VAEs
Variational Autoencoders for multimodal data hold promise for many tasks in data analysis, such as representation learning, conditional generation, and imputation. Current architectures either share the encoder output, decoder input, or both across modalities to learn a shared representation. Such architectures impose hard constraints on the model. In this work, we show that a better latent representation can be obtained by replacing these hard constraints with a soft constraint. We propose a new mixture-of-experts prior, softly guiding each modality's latent representation towards a shared aggregate posterior. This approach results in a superior latent representation and allows each encoding to preserve information better from its uncompressed original features. In extensive experiments on multiple benchmark datasets and two challenging real-world datasets, we show improved learned latent representations and imputation of missing data modalities compared to existing methods.