Goto

Collaborating Authors

Commonsense Reasoning


Heterogeneous Graph Learning for Visual Commonsense Reasoning

Neural Information Processing Systems

Visual commonsense reasoning task aims at leading the research field into solving cognition-level reasoning with the ability of predicting correct answers and meanwhile providing convincing reasoning paths, resulting in three sub-tasks i.e., Q A, QA R and Q AR. It poses great challenges over the proper semantic alignment between vision and linguistic domains and knowledge reasoning to generate persuasive reasoning paths. Existing works either resort to a powerful end-to-end network that cannot produce interpretable reasoning paths or solely explore intra-relationship of visual objects (homogeneous graph) while ignoring the cross-domain semantic alignment among visual concepts and linguistic words. In this paper, we propose a new Heterogeneous Graph Learning (HGL) framework for seamlessly integrating the intra-graph and inter-graph reasoning in order to bridge vision and language domain. Our HGL consists of a primal vision-to-answer heterogeneous graph (VAHG) module and a dual question-to-answer heterogeneous graph (QAHG) module to interactively refine reasoning paths for semantic agreement. Moreover, our HGL integrates a contextual voting module to exploit long-range visual context for better global reasoning. Experiments on the large-scale Visual Commonsense Reasoning benchmark demonstrate the superior performance of our proposed modules on three tasks (improving 5% accuracy on Q A, 3.5% on QA R, 5.8% on Q AR)


Connective Cognition Network for Directional Visual Commonsense Reasoning

Neural Information Processing Systems

Visual commonsense reasoning (VCR) has been introduced to boost research of cognition-level visual understanding, i.e., a thorough understanding of correlated details of the scene plus an inference with related commonsense knowledge. Recent studies on neuroscience have suggested that brain function or cognition can be described as a global and dynamic integration of local neuronal connectivity, which is context-sensitive to specific cognition tasks. Inspired by this idea, towards VCR, we propose a connective cognition network (CCN) to dynamically reorganize the visual neuron connectivity that is contextualized by the meaning of questions and answers. Concretely, we first develop visual neuron connectivity to fully model correlations of visual content. Then, a contextualization process is introduced to fuse the sentence representation with that of visual neurons. Finally, based on the output of contextualized connectivity, we propose directional connectivity to infer answers or rationales. Experimental results on the VCR dataset demonstrate the effectiveness of our method. Particularly, in Q AR mode, our method is around 4% higher than the state-of-the-art method.



KG: Learning From Knowledge Graph Explanations for Commonsense Reasoning

Neural Information Processing Systems

Augmenting pre-trained language models with knowledge graphs (KGs) has achieved success on various commonsense reasoning tasks. However, for a given task instance, the KG, or certain parts of the KG, may not be useful. Although KG-augmented models often use attention to focus on specific KG components, the KG is still always used, and the attention mechanism is never explicitly taught which KG components should be used. Meanwhile, saliency methods can measure how much a KG feature (e.g., graph, node, path) influences the model to make the correct prediction, thus explaining which KG features are useful. This paper explores how saliency explanations can be used to improve KG-augmented models' performance. First, we propose to create coarse (Is the KG useful?) and fine (Which nodes/paths in the KG are useful?)


TGEA 2.0: A Large-Scale Diagnostically Annotated Dataset with Benchmark Tasks for Text Generation of Pretrained Language Models

Neural Information Processing Systems

In order to diagnostically analyze and improve the capability of pretrained language models (PLMs) in text generation, we propose TGEA 2.0, to date the largest dataset built on machine-authored texts by PLMs with fine-grained semantic annotations on a wide variety of pathological generation errors. We collect 170K nominal, phrasal and sentential prompts from 6M natural sentences in 3 domains. These prompts are fed into 4 generative PLMs with their best decoding strategy to generate paragraphs.


A Additional prompt data details

Neural Information Processing Systems

The assistant is helpful, creative, clever, and very friendly. Human: Hello, who are you? AI: I am an AI created by OpenAI. How can I help you today? Human: I'd like to cancel my subscription. AI: chat Marv is a chatbot that reluctantly answers questions with sarcastic responses: You: How many pounds are in a kilogram?


Ron Yosef †

Neural Information Processing Systems

While vision-and-language models perform well on tasks such as visual question answering, they struggle when it comes to basic human commonsense reasoning skills. In this work, we introduce WinoGAViL: an online game of vision-andlanguage associations (e.g., between werewolves and a full moon), used as a dynamic evaluation benchmark. Inspired by the popular card game Codenames, a "spymaster" gives a textual cue related to several visual candidates, and another player tries to identify them. Human players are rewarded for creating associations that are challenging for a rival AI model but still solvable by other human players. We use the game to collect 3.5K instances, finding that they are intuitive for humans (>90% Jaccard index) but challenging for state-of-the-art AI models, where the best model (ViLT) achieves a score of 52%, succeeding mostly where the cue is visually salient. Our analysis as well as the feedback we collect from players indicate that the collected associations require diverse reasoning skills, including general knowledge, common sense, abstraction, and more. We release the dataset, the code and the interactive game, allowing future data collection that can be used to develop models with better association abilities.


Large Language Models are Zero-Shot Reasoners

Neural Information Processing Systems

Pretrained large language models (LLMs) are widely used in many sub-fields of natural language processing (NLP) and generally known as excellent few-shot learners with task-specific exemplars. Notably, chain of thought (CoT) prompting, a recent technique for eliciting complex multi-step reasoning through step-bystep answer examples, achieved the state-of-the-art performances in arithmetics and symbolic reasoning, difficult system-2 tasks that do not follow the standard scaling laws for LLMs. While these successes are often attributed to LLMs' ability for few-shot learning, we show that LLMs are decent zero-shot reasoners by simply adding "Let's think step by step" before each answer. Experimental results demonstrate that our Zero-shot-CoT, using the same single prompt template, significantly outperforms zero-shot LLM performances on diverse benchmark reasoning tasks including arithmetics (MultiArith, GSM8K, AQUA-RAT, SVAMP), symbolic reasoning (Last Letter, Coin Flip), and other logical reasoning tasks (Date Understanding, Tracking Shuffled Objects), without any hand-crafted few-shot examples, e.g.


Appendix Learning Logical Reasoning via Adversarial training

Neural Information Processing Systems

The following argument is tentative and is deduced with bounded rationality, and is for communication purposes only. We realize and well acknowledge that researchers observing different sets of evidence could hold fundamentally different but reasonable views from ours. A.1 Conundrums of Reasoning Along with the increasing interest in reasoning, multiple reasoning terms are proposed - hybrid reasoning, commonsense reasoning, numerical reasoning, multi-hop reasoning, and unspecified general reasoning, to name a few. However, among all these scattered and distinctive types of reasoning, what is varying? What essence remains constant regardless of the variety of forms?


Connective Cognition Network for Directional Visual Commonsense Reasoning

Neural Information Processing Systems

Visual commonsense reasoning (VCR) has been introduced to boost research of cognition-level visual understanding, i.e., a thorough understanding of correlated details of the scene plus an inference with related commonsense knowledge. Recent studies on neuroscience have suggested that brain function or cognition can be described as a global and dynamic integration of local neuronal connectivity, which is context-sensitive to specific cognition tasks. Inspired by this idea, towards VCR, we propose a connective cognition network (CCN) to dynamically reorganize the visual neuron connectivity that is contextualized by the meaning of questions and answers. Concretely, we first develop visual neuron connectivity to fully model correlations of visual content. Then, a contextualization process is introduced to fuse the sentence representation with that of visual neurons.