Goto

Collaborating Authors

 Commonsense Reasoning


CoLoR-Filter: Conditional Loss Reduction Filtering for Targeted Language Model Pre-training

Neural Information Processing Systems

Selecting high-quality data for pre-training is crucial in shaping the downstream task performance of language models. A major challenge lies in identifying this optimal subset, a problem generally considered intractable, thus necessitating scalable and effective heuristics. In this work, we propose a data selection method, CoLoR-Filter (Conditional Loss Reduction Filtering), which leverages an empirical Bayes-inspired approach to derive a simple and computationally efficient selection criterion based on the relative loss values of two auxiliary models. In addition to the modeling rationale, we evaluate CoLoR-Filter empirically on two language modeling tasks: (1) selecting data from C4 for domain adaptation to evaluation on Books and (2) selecting data from C4 for a suite of downstream multiple-choice question answering tasks. We demonstrate favorable scaling both as we subselect more aggressively and using small auxiliary models to select data for large target models. As one headline result, CoLoR-Filter data selected using a pair of 150m parameter auxiliary models can train a 1.2b parameter target model to match a 1.2b parameter model trained on 25b randomly selected tokens with 25x less data for Books and 11x less data for the downstream tasks.


MAGIC-VQA: Multimodal And Grounded Inference with Commonsense Knowledge for Visual Question Answering

arXiv.org Artificial Intelligence

Visual Question Answering (VQA) requires reasoning across visual and textual modalities, yet Large Vision-Language Models (LVLMs) often lack integrated commonsense knowledge, limiting their robustness in real-world scenarios. To address this, we introduce MAGIC-VQA, a novel framework that enhances VQA by systematically integrating commonsense knowledge with LVLMs. MAGIC-VQA employs a three-stage process: (1) Explicit Knowledge Integration from external sources, (2) By-Type Post-Processing for contextual refinement, and (3) Implicit Knowledge Augmentation using a Graph Neural Network (GNN) for structured reasoning. While GNNs bring greater depth to structured inference, they enable superior relational inference beyond LVLMs. MAGIC-VQA bridges a key gap by unifying commonsensse knowledge with LVLM-driven reasoning, eliminating the need for extensive pre-training or complex prompt tuning. Our framework achieves state-of-the-art performance on benchmark datasets, significantly improving commonsense reasoning in VQA.


MetaLA: Unified Optimal Linear Approximation to Softmax Attention Map

Neural Information Processing Systems

Various linear complexity models, such as Linear Transformer (LinFormer), State Space Model (SSM), and Linear RNN (LinRNN), have been proposed to replace the conventional softmax attention in Transformer structures. However, the optimal design of these linear models is still an open question. In this work, we attempt to answer this question by finding the best linear approximation to softmax attention from a theoretical perspective. We start by unifying existing linear complexity models as the linear attention form and then identify three conditions for the optimal linear attention design: i) Dynamic memory ability; ii) Static approximation ability; iii) Least parameter approximation. We find that none of the current linear models meet all three conditions, resulting in suboptimal performance. Instead, we propose Meta Linear Attention (MetaLA) as a solution that satisfies these conditions. Our experiments on Multi-Query Associative Recall (MQAR) task, language modeling, image classification, and Long-Range Arena (LRA) benchmark demonstrate that MetaLA is more effective than the existing linear models.


Reasons and Solutions for the Decline in Model Performance after Editing Xiusheng Huang 1,2,3

Neural Information Processing Systems

Knowledge editing technology has received widespread attention for low-cost updates of incorrect or outdated knowledge in large-scale language models. However, recent research has found that edited models often exhibit varying degrees of performance degradation. The reasons behind this phenomenon and potential solutions have not yet been provided. In order to investigate the reasons for the performance decline of the edited model and optimize the editing method, this work explores the underlying reasons from both data and model perspectives. Specifically, 1) from a data perspective, to clarify the impact of data on the performance of editing models, this paper first constructs a Multi-Question Dataset (MQD) to evaluate the impact of different types of editing data on model performance. The performance of the editing model is mainly affected by the diversity of editing targets and sequence length, as determined through experiments.


Dynamic Task Vector Grouping for Efficient Multi-Task Prompt Tuning

arXiv.org Artificial Intelligence

Multi-task prompt tuning utilizes multiple high-resource source tasks to improve performance on low-source target tasks. Existing approaches transfer the soft prompt trained by combining all source tasks or a single ``high-similar'' source task one-time-only. However, we find that the optimal transfer performance often comes from a combination of source tasks, which is neither one nor all. Further, we find that the similarity between source and target tasks also changes dynamically during fine-tuning after transfering, making similarity calculation in the initiation stage inadequate. To address these issues, we propose a method called Dynamic Task Vector Grouping (DTVG), whose core ideas contain (1) measuring the task similarity with task vectors instead of soft prompt, (2) grouping the optimal source task combination based on two metrics: {\it target similarity} and {\it knowledge consistency}; (3) dynamically updating the combination in each iteration step. Extensive experiments on the 26 NLP datasets under different settings demonstrate that DTVG effectively groups similar source tasks while reducing negative transfer, achieving the start-of-art performance.


Reversal Blessing: Thinking Backward May Outpace Thinking Forward in Multi-choice Questions

arXiv.org Artificial Intelligence

Language models usually use left-to-right (L2R) autoregressive factorization. However, L2R factorization may not always be the best inductive bias. Therefore, we investigate whether alternative factorizations of the text distribution could be beneficial in some tasks. We investigate right-to-left (R2L) training as a compelling alternative, focusing on multiple-choice questions (MCQs) as a test bed for knowledge extraction and reasoning. Through extensive experiments across various model sizes (2B-8B parameters) and training datasets, we find that R2L models can significantly outperform L2R models on several MCQ benchmarks, including logical reasoning, commonsense understanding, and truthfulness assessment tasks. Our analysis reveals that this performance difference may be fundamentally linked to multiple factors including calibration, computability and directional conditional entropy. We ablate the impact of these factors through controlled simulation studies using arithmetic tasks, where the impacting factors can be better disentangled. Our work demonstrates that exploring alternative factorizations of the text distribution can lead to improvements in LLM capabilities and provides theoretical insights into optimal factorization towards approximating human language distribution, and when each reasoning order might be more advantageous.


DataComp-LM: In search of the next generation of training sets for language models Jeffrey Li* 1,2 Alex Fang* 1,2

Neural Information Processing Systems

We introduce DataComp for Language Models (DCLM), a testbed for controlled dataset experiments with the goal of improving language models. As part of DCLM, we provide a standardized corpus of 240T tokens extracted from Common Crawl, effective pretraining recipes based on the OpenLM framework, and a broad suite of 53 downstream evaluations.


A Hitchhiker's Guide to Fine-Grained Face Forgery Detection Using Common Sense Reasoning

Neural Information Processing Systems

Explainability in artificial intelligence is crucial for restoring trust, particularly in areas like face forgery detection, where viewers often struggle to distinguish between real and fabricated content. Vision and Large Language Models (VLLM) bridge computer vision and natural language, offering numerous applications driven by strong common-sense reasoning. Despite their success in various tasks, the potential of vision and language remains underexplored in face forgery detection, where they hold promise for enhancing explainability by leveraging the intrinsic reasoning capabilities of language to analyse fine-grained manipulation areas. For that reason, few works have recently started to frame the problem of deepfake detection as a Visual Question Answering (VQA) task, nevertheless omitting the realistic and informative open-ended multi-label setting. With the rapid advances in the field of VLLM, an exponential rise of investigations in that direction is expected.


Commonsense Reasoning in Arab Culture

arXiv.org Artificial Intelligence

Despite progress in Arabic large language models, such as Jais and AceGPT, their evaluation on commonsense reasoning has largely relied on machine-translated datasets, which lack cultural depth and may introduce Anglocentric biases. Commonsense reasoning is shaped by geographical and cultural contexts, and existing English datasets fail to capture the diversity of the Arab world. To address this, we introduce \datasetname, a commonsense reasoning dataset in Modern Standard Arabic (MSA), covering cultures of 13 countries across the Gulf, Levant, North Africa, and the Nile Valley. The dataset was built from scratch by engaging native speakers to write and validate culturally relevant questions for their respective countries. \datasetname spans 12 daily life domains with 54 fine-grained subtopics, reflecting various aspects of social norms, traditions, and everyday experiences. Zero-shot evaluations show that open-weight language models with up to 32B parameters struggle to comprehend diverse Arab cultures, with performance varying across regions. These findings highlight the need for more culturally aware models and datasets tailored to the Arabic-speaking world.


Synthetic Data Generation for Culturally Nuanced Commonsense Reasoning in Low-Resource Languages

arXiv.org Artificial Intelligence

Quantifying reasoning capability in low-resource languages remains a challenge in NLP due to data scarcity and limited access to annotators. While LLM-assisted dataset construction has proven useful for medium- and high-resource languages, its effectiveness in low-resource languages, particularly for commonsense reasoning, is still unclear. In this paper, we compare three dataset creation strategies: (1) LLM-assisted dataset generation, (2) machine translation, and (3) human-written data by native speakers, to build a culturally nuanced story comprehension dataset. We focus on Javanese and Sundanese, two major local languages in Indonesia, and evaluate the effectiveness of open-weight and closed-weight LLMs in assisting dataset creation through extensive manual validation. To assess the utility of synthetic data, we fine-tune language models on classification and generation tasks using this data and evaluate performance on a human-written test set. Our findings indicate that LLM-assisted data creation outperforms machine translation.