Collaborating Authors

Case-Based Reasoning

COMET: An Application of Model-Based Reasoning to Accounting Systems

AI Magazine

An important problem faced by auditors is gauging how much reliance can be placed on the accounting systems that process millions of transactions to produce the numbers summarized in a company's financial statements. Accounting sys-ems contain internal controls, procedures designed to detect and correct errors and irregularities that can occur in the processing of transactions. In a complex accounting system, it can be an extremely difficult task for the auditor to anticipate the possible errors that can occur and evaluate the effectiveness of the controls at detecting them. An accurate analysis must take into account the unique features of each company's business processes. To cope with this complexity and variability, the COMET system applies a model-based reasoning approach to the analysis of accounting systems and their controls.

CARMA: A Case-Based Rangeland Management Adviser

AI Magazine

CARMA is an advisory system for rangeland grasshopper infestations that demonstrates how AI technology can deliver expert advice to compensate for cutbacks in public services. CARMA uses two knowledge sources for the key task of predicting forage consumption by grasshoppers: (1) cases obtained by asking a group of experts to solve representative hypothetical problems and (2) a numeric model of rangeland ecosystems. These knowledge sources are integrated through the technique of model-based adaptation, in which case-based reasoning is used to find an approximate solution, and the model is used to adapt this approximate solution into a more precise solution. CARMA has been used in Wyoming counties since 1996. The combination of a simple interface, flexible control strategy, and integration of multiple knowledge sources makes CARMA accessible to inexperienced users and capable of producing advice comparable to that produced by human experts.

AI and Music: From Composition to Expressive Performance

AI Magazine

In this article, we first survey the three major types of computer music systems based on AI techniques: (1) compositional, (2) improvisational, and (3) performance systems. Representative examples of each type are briefly described. Then, we look in more detail at the problem of endowing the resulting performances with the expressiveness that characterizes human-generated music. This is one of the most challenging aspects of computer music that has been addressed just recently. The main problem in modeling expressiveness is to grasp the performer's "touch," that is, the knowledge applied when performing a score.

Playing with Cases: Rendering Expressive Music with Case-Based Reasoning

AI Magazine

Following a brief overview discussing why we prefer listening to expressive music instead of lifeless synthesized music, we examine a representative selection of well-known approaches to expressive computer music performance with an emphasis on AI-related approaches. In the main part of the paper we focus on the existing CBR approaches to the problem of synthesizing expressive music, and particularly on TempoExpress, a case-based reasoning system developed at our Institute, for applying musically acceptable tempo transformations to monophonic audio recordings of musical performances. Finally we briefly describe an ongoing extension of our previous work consisting on complementing audio information with information of the gestures of the musician. Music is played through our bodies, therefore capturing the gesture of the performer is a fundamental aspect that has to be taken into account in future expressive music renderings. This paper is based on the "2011 Robert S. Engelmore Memorial Lecture" given by the first author at AAAI/IAAI 2011.

Deep learning and case-based reasoning for predictive and adaptive traffic emergency management


An efficient traffic signal control system (TSCS) should not only be reactive to the current traffic but also be predictive by anticipating future traffic disturbances. In this study, we investigate the potential of using convolution neural network (CNN) in detecting emergency cases and forecasting events that can interrupt the traffic flow. Case-based reasoning (CBR) is then exploited to react to detected and forecasted events. We further develop an adapted Reinforcement Leaning (RL) algorithm in building and enhancing the case bases. The proposed system inherits the advantages of CNN, CBR, and RL, which allow detection, prediction, control, evaluation, and learning in a unified framework.

A Methodological Approach to Model CBR-based Systems Artificial Intelligence

MLassisted applications are a trend, and many researchers and developers are rushing to apply ML and recover their inherent potential benefits [2] [3]. However, using ML techniques to solve any problem do require some previous background and expertise. For example, it is vital to choose the ML technique that better suits the target application in terms of available computational capability and expected target results. In sequence to an adequate ML technique choice, it is typically necessary to model the problem under the premises of the chosen technique. The modeling process may include, as an example, an MDP-based markovian process (Markov Decision Process) like Q-Learning or SARSA formulation for Reinforcement Learning or the definition of a neural network structure for Neural Networks (NN) [4] [5].

Beer brand offering 30 cases to anyone who can prove they were behind strange library discovery

FOX News

Fox News Flash top headlines are here. Check out what's clicking on A Minnesota beer brand is planning to reward one person's extremely questionable behavior with a ridiculous amount of free beer. Hamm's, which bills itself as "the beer … refreshing," has announced a contest to find the library-goer who hid several cans of Hamm's beer behind some paneling at a Washington state library some time in the 1980s. BUDWEISER WANTS TO BECOME UTAH'S STATE BEER News of the hidden stash recently made headlines after facilities workers at the Walla Walla Public Library discovered the beer -- which is estimated to be over 30 years old -- during a reorganizing of the facility.

Proof of concept is old news; Let's talk proof of value in IoT - IoT Agenda


Since the next gen technologies became mainstream about three to four years ago, the IoT industry has gone through a significant journey. Needless to say, IoT has been the focal point of many transformation-related conversation in the asset heavy industries. In the beginning, most organizations were struggling with the question of how to interpret IoT in the context of their business. Since the possibilities were endless, so was the dilemma of where and how to begin. The industry ultimately chose to go with a case-based approach and the technology service providers played a key role in launching it.

An Ontological AI-and-Law Framework for the Autonomous Levels of AI Legal Reasoning Artificial Intelligence

A framework is proposed that seeks to identify and establish a set of robust autonomous levels articulating the realm of Artificial Intelligence and Legal Reasoning (AILR). Doing so provides a sound and parsimonious basis for being able to assess progress in the application of AI to the law, and can be utilized by scholars in academic pursuits of AI legal reasoning, along with being used by law practitioners and legal professionals in gauging how advances in AI are aiding the practice of law and the realization of aspirational versus achieved results. A set of seven levels of autonomy for AI and Legal Reasoning are meticulously proffered and mindfully discussed.

TAR 1.0 or TAR 2.0: Which method is best for you?


In Casepoint, for example, a user can begin a TAR 2.0 session by reviewing as few as 50 documents (although our recommended ranking threshold is every 100 documents), and at each ranking threshold, the model re-ranks the corpus automatically. Doing this in tandem with Casepoint's Dynamic Batching feature, the user ensures that they are always looking at the highest-ranked documents. This allows you to strengthen your model faster because TAR 2.0 will continue to present documents in the batches until none of the documents presented are of relevance. Another benefit of TAR 2.0 is the ability to run multiple sessions simultaneously, where each session represents a different legal topic or issue you are trying to find relevant documents for. Being able to "bucket" groups of documents by relevant issues and have people dive into the review right away is a huge step forward.