Goto

Collaborating Authors

Analogical Reasoning


Applying Perceptually Driven Cognitive Mapping to Virtual Urban Environments

AI Magazine

This article describes a method for building a cognitive map of a virtual urban environment. Our routines enable virtual humans to map their environment using a realistic model of perception. We based our implementation on a computational framework proposed by Yeap and Jefferies (1999) for representing a local environment as a structure called an absolute space representation (ASR). Their algorithms compute and update ASRs from a 2-1/2-dimensional (2-1/2D) sketch of the local environment and then connect the ASRs together to form a raw cognitive map.1 Our work extends the framework developed by Yeap and Jefferies in three important ways. First, we implemented the framework in a virtual training environment, the mission rehearsal exercise (Swartout et al. 2001).


Analogical Proportions

arXiv.org Artificial Intelligence

Analogy-making is at the core of human intelligence and creativity with applications to such diverse tasks as commonsense reasoning, learning, language acquisition, and story telling. This paper contributes to the foundations of artificial general intelligence by introducing an abstract algebraic framework of analogical proportions of the form `$a$ is to $b$ what $c$ is to $d$' in the general setting of universal algebra. This enables us to compare mathematical objects possibly across different domains in a uniform way which is crucial for AI-systems. The main idea is to define solutions to analogical equations in terms of generalizations and to derive abstract terms of concrete elements from a `known' source domain which can then be instantiated in an `unknown' target domain to obtain analogous elements. We extensively compare our framework with two prominent and recently introduced frameworks of analogical proportions from the literature in the concrete domains of sets, numbers, and words and show that our framework yields strictly more reasonable solutions in all of these cases which provides evidence for the applicability of our framework. In a broader sense, this paper is a first step towards an algebraic theory of analogical reasoning and learning systems with potential applications to fundamental AI-problems like commonsense reasoning and computational learning and creativity.


Characterizing an Analogical Concept Memory for Architectures Implementing the Common Model of Cognition

arXiv.org Artificial Intelligence

Architectures that implement the Common Model of Cognition - Soar, ACT-R, and Sigma - have a prominent place in research on cognitive modeling as well as on designing complex intelligent agents. In this paper, we explore how computational models of analogical processing can be brought into these architectures to enable concept acquisition from examples obtained interactively. We propose a new analogical concept memory for Soar that augments its current system of declarative long-term memories. We frame the problem of concept learning as embedded within the larger context of interactive task learning (ITL) and embodied language processing (ELP). We demonstrate that the analogical learning methods implemented in the proposed memory can quickly learn a diverse types of novel concepts that are useful not only in recognition of a concept in the environment but also in action selection. Our approach has been instantiated in an implemented cognitive system \textsc{Aileen} and evaluated on a simulated robotic domain.


Analogical Reasoning for Visually Grounded Language Acquisition

arXiv.org Artificial Intelligence

Children acquire language subconsciously by observing the surrounding world and listening to descriptions. They can discover the meaning of words even without explicit language knowledge, and generalize to novel compositions effortlessly. In this paper, we bring this ability to AI, by studying the task of Visually grounded Language Acquisition (VLA). We propose a multimodal transformer model augmented with a novel mechanism for analogical reasoning, which approximates novel compositions by learning semantic mapping and reasoning operations from previously seen compositions. Our proposed method, Analogical Reasoning Transformer Networks (ARTNet), is trained on raw multimedia data (video frames and transcripts), and after observing a set of compositions such as "washing apple" or "cutting carrot", it can generalize and recognize new compositions in new video frames, such as "washing carrot" or "cutting apple". To this end, ARTNet refers to relevant instances in the training data and uses their visual features and captions to establish analogies with the query image. Then it chooses the suitable verb and noun to create a new composition that describes the new image best. Extensive experiments on an instructional video dataset demonstrate that the proposed method achieves significantly better generalization capability and recognition accuracy compared to state-of-the-art transformer models.


Neural Analogical Matching

arXiv.org Artificial Intelligence

Analogy is core to human cognition. It allows us to solve problems based on prior experience, it governs the way we conceptualize new information, and it even influences our visual perception. The importance of analogy to humans has made it an active area of research in the broader field of artificial intelligence, resulting in data-efficient models that learn and reason in human-like ways. While analogy and deep learning have generally been considered independently of one another, the integration of the two lines of research seems like a promising step towards more robust and efficient learning techniques. As part of the first steps towards such an integration, we introduce the Analogical Matching Network; a neural architecture that learns to produce analogies between structured, symbolic representations that are largely consistent with the principles of Structure-Mapping Theory.


Learning to See Analogies: A Connectionist Exploration

arXiv.org Artificial Intelligence

This dissertation explores the integration of learning and analogy-making through the development of a computer program, called Analogator, that learns to make analogies by example. By "seeing" many different analogy problems, along with possible solutions, Analogator gradually develops an ability to make new analogies. That is, it learns to make analogies by analogy. This approach stands in contrast to most existing research on analogy-making, in which typically the a priori existence of analogical mechanisms within a model is assumed. The present research extends standard connectionist methodologies by developing a specialized associative training procedure for a recurrent network architecture. The network is trained to divide input scenes (or situations) into appropriate figure and ground components. Seeing one scene in terms of a particular figure and ground provides the context for seeing another in an analogous fashion. After training, the model is able to make new analogies between novel situations. Analogator has much in common with lower-level perceptual models of categorization and recognition; it thus serves as a unifying framework encompassing both high-level analogical learning and low-level perception. This approach is compared and contrasted with other computational models of analogy-making. The model's training and generalization performance is examined, and limitations are discussed.


Learning Perceptual Inference by Contrasting

arXiv.org Artificial Intelligence

"Thinking in pictures," [1] i.e., spatial-temporal reasoning, effortless and instantaneous for humans, is believed to be a significant ability to perform logical induction and a crucial factor in the intellectual history of technology development. Modern Artificial Intelligence (AI), fueled by massive datasets, deeper models, and mighty computation, has come to a stage where (super-)human-level performances are observed in certain specific tasks. However, current AI's ability in "thinking in pictures" is still far lacking behind. In this work, we study how to improve machines' reasoning ability on one challenging task of this kind: Raven's Progressive Matrices (RPM). Specifically, we borrow the very idea of "contrast effects" from the field of psychology, cognition, and education to design and train a permutation-invariant model. Inspired by cognitive studies, we equip our model with a simple inference module that is jointly trained with the perception backbone. Combining all the elements, we propose the Contrastive Perceptual Inference network (CoPINet) and empirically demonstrate that CoPINet sets the new state-of-the-art for permutation-invariant models on two major datasets. We conclude that spatial-temporal reasoning depends on envisaging the possibilities consistent with the relations between objects and can be solved from pixel-level inputs.


A Short Remark on Analogical Reasoning

arXiv.org Artificial Intelligence

We discuss the problem of defining a logic for analogical reasoning, and sketch a solution in the style of the semantics for Counterfactual Conditionals, Preferential Structures, etc.


Learning to Make Analogies by Contrasting Abstract Relational Structure

arXiv.org Artificial Intelligence

Analogical reasoning has been a principal focus of various waves of AI research. Analogy is particularly challenging for machines because it requires relational structures to be represented such that they can be flexibly applied across diverse domains of experience. Here, we study how analogical reasoning can be induced in neural networks that learn to perceive and reason about raw visual data. We find that the critical factor for inducing such a capacity is not an elaborate architecture, but rather, careful attention to the choice of data and the manner in which it is presented to the model. The most robust capacity for analogical reasoning is induced when networks learn analogies by contrasting abstract relational structures in their input domains, a training method that uses only the input data to force models to learn about important abstract features. Using this technique we demonstrate capacities for complex, visual and symbolic analogy making and generalisation in even the simplest neural network architectures.


Proceedings of the 2nd Symposium on Problem-solving, Creativity and Spatial Reasoning in Cognitive Systems, ProSocrates 2017

arXiv.org Artificial Intelligence

Cognitive scientists of the embodied cognition tradition have been providing evidence that a large part of our creative reasoning and problemsolving processes are carried out by means of conceptual metaphor and blending, grounded on our bodily experience with the world. In this talk I shall aim at fleshing out a mathematical model that has been proposed in the last decades for expressing and exploring conceptual metaphor and blending with greater precision than has previously been done. In particular, I shall focus on the notion of aptness of a metaphor or blend and on the validity of metaphorical entailment. Towards this end, I shall use a generalisation of the category-theoretic notion of colimit for modelling conceptual metaphor and blending in combination with the idea of reasoning at a distance as modelled in the Barwise-Seligman theory of information flow. I shall illustrate the adequacy of the proposed model with an example of creative reasoning about space and time for solving a classical brainteaser. Furthermore, I shall argue for the potential applicability of such mathematical model for ontology engineering, computational creativity, and problem-solving in general.