Goto

Collaborating Authors

 Agents


Beating a Defender in Robotic Soccer: Memory-Based Learning of a Continuous Function

Neural Information Processing Systems

Our research works towards this broad goal from a Machine Learning perspective. We are particularly interested in investigating how an intelligent agent can choose an action in an adversarial environment. We assume that the agent has a specific goal to achieve. We conduct this investigation in a framework where teams of agents compete in a game of robotic soccer. The real system of model cars remotely controlled from off-board computers is under development.


Mechanisms for Automated Negotiation in State Oriented Domains

Journal of Artificial Intelligence Research

This paper lays part of the groundwork for a domain theory of negotiation, that is, a way of classifying interactions so that it is clear, given a domain, which negotiation mechanisms and strategies are appropriate. We define State Oriented Domains, a general category of interaction. Necessary and sufficient conditions for cooperation are outlined. We use the notion of worth in an altered definition of utility, thus enabling agreements in a wider class of joint-goal reachable situations. An approach is offered for conflict resolution, and it is shown that even in a conflict situation, partial cooperative steps can be taken by interacting agents (that is, agents in fundamental conflict might still agree to cooperate up to a certain point). A Unified Negotiation Protocol (UNP) is developed that can be used in all types of encounters. It is shown that in certain borderline cooperative situations, a partial cooperative agreement (i.e., one that does not achieve all agents' goals) might be preferred by all agents, even though there exists a rational agreement that would achieve all their goals. Finally, we analyze cases where agents have incomplete information on the goals and worth of other agents. First we consider the case where agents' goals are private information, and we analyze what goal declaration strategies the agents might adopt to increase their utility. Then, we consider the situation where the agents' goals (and therefore stand-alone costs) are common knowledge, but the worth they attach to their goals is private information. We introduce two mechanisms, one 'strict', the other 'tolerant', and analyze their affects on the stability and efficiency of negotiation outcomes.


Immobile Robots AI in the New Millennium

AI Magazine

A new generation of sensor-rich, massively distributed, autonomous systems are being developed that have the potential for profound social, environmental, and economic change. These systems include networked building energy systems, autonomous space probes, chemical plant control systems, satellite constellations for remote ecosystem monitoring, power grids, biospherelike life-support systems, and reconfigurable traffic systems, to highlight but a few. To achieve high performance, these immobile robots (or immobots) will need to develop sophisticated regulatory and immune systems that accurately and robustly control their complex internal functions. Thus, immobots will exploit a vast nervous system of sensors to model themselves and their environment on a grand scale. They will use these models to dramatically reconfigure themselves to survive decades of autonomous operation. Achieving these large-scale modeling and configuration tasks will require a tight coupling between the higher-level coordination function provided by symbolic reasoning and the lower-level autonomic processes of adaptive estimation and control. To be economically viable, they will need to be programmable purely through high-level compositional models. Self-modeling and self-configuration, autonomic functions coordinated through symbolic reasoning, and compositional, model-based programming are the three key elements of a model-based autonomous system architecture that is taking us into the new millennium.


The 1996 AAAI Spring Symposia Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence held its 1996 Spring Symposia Series on March 27 to 29 at Stanford University. This article contains summaries of the eight symposia that were conducted: (1) Acquisition, Learning, and Demonstration: Automating Tasks for Users; (2) Adaptation, Coevolution, and Learning in Multiagent Systems; (3) Artificial Intelligence in Medicine: Applications of Current Technologies; (4) Cognitive and Computational Models of Spatial Representation; (5) Computational Implicature: Computational Approaches to Interpreting and Generating Conversational Implicature; (6) Computational Issues in Learning Models of Dynamic Systems; (7) Machine Learning in Information Access; and (8) Planning with Incomplete Information for Robot Problems.


Collaborative Systems (AAAI-94 Presidential Address)

AI Magazine

The construction of computer systems that are intelligent, collaborative problem-solving partners is an important goal for both the science of AI and its application. From the scientific perspective, the development of theories and mechanisms to enable building collaborative systems presents exciting research challenges across AI subfields. From the applications perspective, the capability to collaborate with users and other systems is essential if large-scale information systems of the future are to assist users in finding the information they need and solving the problems they have. In this address, it is argued that collaboration must be designed into systems from the start; it cannot be patched on. Key features of collaborative activity are described, the scientific base provided by recent AI research is discussed, and several of the research challenges posed by collaboration are presented. It is further argued that research on, and the development of, collaborative systems should itself be a collaborative endeavor -- within AI, across subfields of computer science, and with researchers in other fields.


The 1996 AAAI Spring Symposia Reports

AI Magazine

The Association for the Advancement of Artificial Intelligence held its 1996 Spring Symposia Series on March 27 to 29 at Stanford University. This article contains summaries of the eight symposia that were conducted: (1) Acquisition, Learning, and Demonstration: Automating Tasks for Users; (2) Adaptation, Coevolution, and Learning in Multiagent Systems; (3) Artificial Intelligence in Medicine: Applications of Current Technologies; (4) Cognitive and Computational Models of Spatial Representation; (5) Computational Implicature: Computational Approaches to Interpreting and Generating Conversational Implicature; (6) Computational Issues in Learning Models of Dynamic Systems; (7) Machine Learning in Information Access; and (8) Planning with Incomplete Information for Robot Problems.


On Partially Controlled Multi-Agent Systems

Journal of Artificial Intelligence Research

Motivated by the control theoretic distinction between controllable and uncontrollable events, we distinguish between two types of agents within a multi-agent system: controllable agents, which are directly controlled by the system's designer, and uncontrollable agents, which are not under the designer's direct control. We refer to such systems as partially controlled multi-agent systems, and we investigate how one might influence the behavior of the uncontrolled agents through appropriate design of the controlled agents. In particular, we wish to understand which problems are naturally described in these terms, what methods can be applied to influence the uncontrollable agents, the effectiveness of such methods, and whether similar methods work across different domains. Using a game-theoretic framework, this paper studies the design of partially controlled multi-agent systems in two contexts: in one context, the uncontrollable agents are expected utility maximizers, while in the other they are reinforcement learners. We suggest different techniques for controlling agents' behavior in each domain, assess their success, and examine their relationship.


IJCAI-95 Workshop on Adaptation and Learning in Multiagent Systems

AI Magazine

The goal of the Workshop on Adaptation and Learning in Multiagent Systems was to focus on research that addresses unique requirements for agents learning and adapting to work in the presence of other agents. Recognizing the applicability and limitations of current machine-learning research as applied to multiagent problems and developing new learning and adaptation mechanisms particularly targeted to this class of problems were the primary research issues that we wanted the authors to address. This article outlines the presentations that were made at the workshop and the success of the workshop in meeting the established goals. Issues that need to be better understood are also presented.


IJCAI-95 Workshop on Adaptation and Learning in Multiagent Systems

AI Magazine

The goal of the Workshop on Adaptation and Learning in Multiagent Systems was to focus on research that addresses unique requirements for agents learning and adapting to work in the presence of other agents. Recognizing the applicability and limitations of current machine-learning research as applied to multiagent problems and developing new learning and adaptation mechanisms particularly targeted to this class of problems were the primary research issues that we wanted the authors to address. This article outlines the presentations that were made at the workshop and the success of the workshop in meeting the established goals. Issues that need to be better understood are also presented.


Thirteenth International Distributed AI Workshop

AI Magazine

The goal of this workshop was which was held in June 1995 in San istributed artificial intelligence the cooperative solution of "making connections," trying to better Francisco. The DAI Workshop problems in multiagent intelligent understand the connections received financial support from the systems with both computational between DAI and related fields (for American Association for Artificial and human agents. The central problem example, computer-supported cooperative Intelligence as well as the Boeing in DAI is how to achieve coordinated work, group decision support Company. Registration materials for the Thirteenth National Conference on Artificial Intelligence (AAAI-96), the Eighth Innovative Applications of Artificial Intelligence Conference (IAAI-96), and the Second International Conference on Knowledge Discovery and Data Mining (KDD-96) are now available from the AAAI office at ncai@aaai.org Copies of the AAAI-96 registration brochure are being mailed to all AAAI members.