Text Processing
TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control Zhenhang Li1,3 Dongbao Yang 1,3
Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing finegrained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy.
Toward Semantic Gaze Target Detection Anshul Gupta Idiap Research Institute Jean-Marc Odobez Idiap Research Institute
From the onset of infanthood, humans naturally develop the ability to closely observe and interpret the visual gaze of others. This skill, known as gaze following, holds significance in developmental theory as it enables us to grasp another person's mental state, emotions, intentions, and more [6]. In computer vision, gaze following is defined as the prediction of the pixel coordinates where a person in the image is focusing their attention. Existing methods in this research area have predominantly centered on pinpointing the gaze target by predicting a gaze heatmap or gaze point. However, a notable drawback of this approach is its limited practical value in gaze applications, as mere localization may not fully capture our primary interest -- understanding the underlying semantics, such as the nature of the gaze target, rather than just its 2D pixel location. To address this gap, we extend the gaze following task, and introduce a novel architecture that simultaneously predicts the localization and semantic label of the gaze target. We devise a pseudo-annotation pipeline for the GazeFollow dataset, propose a new benchmark, develop an experimental protocol and design a suitable baseline for comparison. Our method sets a new state-of-the-art on the main GazeFollow benchmark for localization and achieves competitive results in the recognition task on both datasets compared to the baseline, with 40% fewer parameters.
Context-guided Embedding Adaptation for Effective Topic Modeling in Low-Resource Regimes
Embedding-based neural topic models have turned out to be a superior option for low-resourced topic modeling. However, current approaches consider static word embeddings learnt from source tasks as general knowledge that can be transferred directly to the target task, discounting the dynamically changing nature of word meanings in different contexts, thus typically leading to sub-optimal results when adapting to new tasks with unfamiliar contexts. To settle this issue, we provide an effective method that centers on adaptively generating semantically tailored word embeddings for each task by fully exploiting contextual information. Specifically, we first condense the contextual syntactic dependencies of words into a semantic graph for each task, which is then modeled by a Variational Graph Auto-Encoder to produce task-specific word representations. On this basis, we further impose a learnable Gaussian mixture prior on the latent space of words to efficiently learn topic representations from a clustering perspective, which contributes to diverse topic discovery and fast adaptation to novel tasks. We have conducted a wealth of quantitative and qualitative experiments, and the results show that our approach comprehensively outperforms established topic models.
METS-CoV: A Dataset of Medical Entity and Targeted Sentiment on COVID-19 Related Tweets Peilin Zhou 1,2 Zeqiang Wang 1,2
The COVID-19 pandemic continues to bring up various topics discussed or debated on social media. In order to explore the impact of pandemics on people's lives, it is crucial to understand the public's concerns and attitudes towards pandemicrelated entities (e.g., drugs, vaccines) on social media. However, models trained on existing named entity recognition (NER) or targeted sentiment analysis (TSA) datasets have limited ability to understand COVID-19-related social media texts because these datasets are not designed or annotated from a medical perspective. This paper releases METS-CoV, a dataset containing medical entities and targeted sentiments from COVID-19-related tweets. METS-CoV contains 10,000 tweets with 7 types of entities, including 4 medical entity types (Disease, Drug, Symptom, and Vaccine) and 3 general entity types (Person, Location, and Organization). To further investigate tweet users' attitudes toward specific entities, 4 types of entities (Person, Organization, Drug, and Vaccine) are selected and annotated with user sentiments, resulting in a targeted sentiment dataset with 9,101 entities (in 5,278 tweets). To the best of our knowledge, METS-CoV is the first dataset to collect medical entities and corresponding sentiments of COVID-19-related tweets.
Multi-Head Mixture-of-Experts Xun Wu, Shaohan Huang, Wenhui Wang, Shuming Ma, Li Dong, Furu Wei Microsoft Research Asia
However, it exhibits the low expert activation issue, i.e., only a small subset of experts are activated for optimization, leading to suboptimal performance and limiting its effectiveness in learning a larger number of experts in complex tasks. In this paper, we propose Multi-Head Mixture-of-Experts (MH-MoE). MH-MoE split each input token into multiple sub-tokens, then these sub-tokens are assigned to and processed by a diverse set of experts in parallel, and seamlessly reintegrated into the original token form. The above operations enables MH-MoE to significantly enhance expert activation while collectively attend to information from various representation spaces within different experts to deepen context understanding. Besides, it's worth noting that our MH-MoE is straightforward to implement and decouples from other SMoE frameworks, making it easy to integrate with these frameworks for enhanced performance. Extensive experimental results across different parameter scales (300M to 7B) and three pre-training tasks--English-focused language modeling, multi-lingual language modeling and masked multi-modality modeling--along with multiple downstream validation tasks, demonstrate the effectiveness of MH-MoE.
Zero-Shot Semantic Segmentation
Maxime Bucher, Tuan-Hung VU, Matthieu Cord, Patrick Pรฉrez
Semantic segmentation models are limited in their ability to scale to large numbers of object classes. In this paper, we introduce the new task of zero-shot semantic segmentation: learning pixel-wise classifiers for never-seen object categories with zero training examples. To this end, we present a novel architecture, ZS3Net, combining a deep visual segmentation model with an approach to generate visual representations from semantic word embeddings. By this way, ZS3Net addresses pixel classification tasks where both seen and unseen categories are faced at test time (so called "generalized" zero-shot classification). Performance is further improved by a self-training step that relies on automatic pseudo-labeling of pixels from unseen classes. On the two standard segmentation datasets, Pascal-VOC and Pascal-Context, we propose zero-shot benchmarks and set competitive baselines. For complex scenes as ones in the Pascal-Context dataset, we extend our approach by using a graph-context encoding to fully leverage spatial context priors coming from class-wise segmentation maps.
Simple strategies for recovering inner products from coarsely quantized random projections
Random projections have been increasingly adopted for a diverse set of tasks in machine learning involving dimensionality reduction. One specific line of research on this topic has investigated the use of quantization subsequent to projection with the aim of additional data compression. Motivated by applications in nearest neighbor search and linear learning, we revisit the problem of recovering inner products (respectively cosine similarities) in such setting. We show that even under coarse scalar quantization with 3 to 5 bits per projection, the loss in accuracy tends to range from negligible'' tomoderate''. One implication is that in most scenarios of practical interest, there is no need for a sophisticated recovery approach like maximum likelihood estimation as considered in previous work on the subject.