Large Language Model
Buffer of Thoughts: Thought-Augmented Reasoning with Large Language Models
We introduce Buffer of Thoughts (BoT), a novel and versatile thought-augmented reasoning approach for enhancing accuracy, efficiency and robustness of large language models (LLMs). Specifically, we propose meta-buffer to store a series of informative high-level thoughts, namely thought-template, distilled from the problem-solving processes across various tasks. Then for each problem, we retrieve a relevant thought-template and adaptively instantiate it with specific reasoning structures to conduct efficient reasoning. To guarantee the scalability and stability, we further propose buffer-manager to dynamically update the meta-buffer, thus enhancing the capacity of meta-buffer as more tasks are solved. We conduct extensive experiments on 10 challenging reasoning-intensive tasks, and achieve significant performance improvements over previous SOTA methods: 11% on Game of 24, 20% on Geometric Shapes and 51% on Checkmate-in-One. Further analysis demonstrate the superior generalization ability and model robustness of our BoT, while requiring only 12% of the cost of multi-query prompting methods (e.g., tree/graph of thoughts) on average. Notably, we find that our Llama3-8B + BoT has the potential to surpass Llama3-70B model.
Bridging The Gap between Low-rank and Orthogonal Adaptation via Householder Reflection Adaptation Shen Yuan 1
While following different technical routes, both low-rank and orthogonal adaptation techniques can efficiently adapt large-scale pre-training models in specific tasks or domains based on a small piece of trainable parameters. In this study, we bridge the gap between these two techniques, proposing a simple but effective adaptation method based on Householder reflections. Given a pre-trained model, our method fine-tunes its layers by multiplying each frozen weight matrix with an orthogonal matrix constructed by a chain of learnable Householder reflections (HRs). This HR-based orthogonal fine-tuning is equivalent to an adaptive low-rank adaptation. Moreover, we show that the orthogonality of the reflection planes corresponding to the HRs impacts the model capacity and regularity. The analysis motivates us to regularize the orthogonality of the HRs, leading to different implementations of the proposed Householder reflection adaptation (HRA) method. Compared with state-of-the-art methods, HRA achieves superior performance with fewer learnable parameters when adapting large language models and conditional image generators. The code of the experiments is available at https://github.com/ DaShenZi721/HRA, and the method has been merged into the PEFT package.
Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context
When making decisions under uncertainty, individuals often deviate from rational behavior, which can be evaluated across three dimensions: risk preference, probability weighting, and loss aversion. Given the widespread use of large language models (LLMs) in supporting decision-making processes, it is crucial to assess whether their behavior aligns with human norms and ethical expectations or exhibits potential biases. Although several empirical studies have investigated the rationality and social behavior performance of LLMs, their internal decisionmaking tendencies and capabilities remain inadequately understood. This paper proposes a framework, grounded in behavioral economics theories, to evaluate the decision-making behaviors of LLMs. With a multiple-choice-list experiment, we initially estimate the degree of risk preference, probability weighting, and loss aversion in a context-free setting for three commercial LLMs: ChatGPT-4.0-Turbo,
Efficient Generative LLM Inference with Recallable Key-Value Eviction
Large Language Models (LLMs) are widely used in today's tasks of natural language processing. To support applications like multi-turn chats, document understanding, and content generation, models with long context lengths are growing in importance. However, managing long contexts brings substantial challenges due to the expansion of key-value cache (KV cache). Longer KV cache requires larger memory, limiting the batch-size and thus decreasing throughput.
Prediction-Powered Ranking of Large Language Models
Large language models are often ranked according to their level of alignment with human preferences--a model is better than other models if its outputs are more frequently preferred by humans. One of the popular ways to elicit human preferences utilizes pairwise comparisons between the outputs provided by different models to the same inputs. However, since gathering pairwise comparisons by humans is costly and time-consuming, it has become a common practice to gather pairwise comparisons by a strong large language model--a model strongly aligned with human preferences. Surprisingly, practitioners cannot currently measure the uncertainty that any mismatch between human and model preferences may introduce in the constructed rankings. In this work, we develop a statistical framework to bridge this gap. Given a (small) set of pairwise comparisons by humans and a large set of pairwise comparisons by a model, our framework provides a rank-set--a set of possible ranking positions--for each of the models under comparison. Moreover, it guarantees that, with a probability greater than or equal to a user-specified value, the rank-sets cover the true ranking consistent with the distribution of human pairwise preferences asymptotically. Using pairwise comparisons made by humans in the LMSYS Chatbot Arena platform and pairwise comparisons made by three strong large language models, we empirically demonstrate the effectivity of our framework and show that the rank-sets constructed using only pairwise comparisons by the strong large language models are often inconsistent with (the distribution of) human pairwise preferences.
Customizing Language Models with Instance-wise LoRA for Sequential Recommendation Jiancan Wu1
Sequential recommendation systems predict the next interaction item based on users' past interactions, aligning recommendations with individual preferences. Leveraging the strengths of Large Language Models (LLMs) in knowledge comprehension and reasoning, recent approaches are eager to apply LLMs to sequential recommendation. A common paradigm is converting user behavior sequences into instruction data, and fine-tuning the LLM with parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaption (LoRA). However, the uniform application of LoRA across diverse user behaviors is insufficient to capture individual variability, resulting in negative transfer between disparate sequences. To address these challenges, we propose Instance-wise LoRA (iLoRA).
Bigger, Regularized, Optimistic: scaling for compute and sample-efficient continuous control Piotr Miłoś
Sample efficiency in Reinforcement Learning (RL) has traditionally been driven by algorithmic enhancements. In this work, we demonstrate that scaling can also lead to substantial improvements. We conduct a thorough investigation into the interplay of scaling model capacity and domain-specific RL enhancements. These empirical findings inform the design choices underlying our proposed BRO (Bigger, Regularized, Optimistic) algorithm. The key insight behind BRO is that strong regularization allows for effective scaling of the critic networks, which, paired with optimistic exploration, leads to superior performance. BRO achieves state-of-theart results, significantly outperforming the leading model-based and model-free algorithms across 40 complex tasks from the DeepMind Control, MetaWorld, and MyoSuite benchmarks. BRO is the first model-free algorithm to achieve near-optimal policies in the notoriously challenging Dog and Humanoid tasks.
T2Vs Meet VLMs: A Scalable Multimodal Dataset for Visual Harmfulness Recognition Chen Yeh 1 You-Ming Chang 1 Wei-Chen Chiu 1
Warning: This paper contains inappropriate/harmful visual contents. While widespread access to the Internet and the rapid advancement of generative models boost people's creativity and productivity, the risk of encountering inappropriate or harmful content also increases. To address the aforementioned issue, researchers managed to incorporate several harmful contents datasets with machine learning methods to detect harmful concepts. However, existing harmful datasets are curated by the presence of a narrow range of harmful objects, and only cover real harmful content sources. This restricts the generalizability of methods based on such datasets and leads to the potential misjudgment in certain cases. Therefore, we propose a comprehensive and extensive harmful dataset, VHD11K, consisting of 10,000 images and 1,000 videos, crawled from the Internet and generated by 4 generative models, across a total of 10 harmful categories covering a full spectrum of harmful concepts with non-trival definition. We also propose a novel annotation framework by formulating the annotation process as a multi-agent Visual Question Answering (VQA) task, having 3 different VLMs "debate" about whether the given image/video is harmful, and incorporating the in-context learning strategy in the debating process. Therefore, we can ensure that the VLMs consider the context of the given image/video and both sides of the arguments thoroughly before making decisions, further reducing the likelihood of misjudgments in edge cases. Evaluation and experimental results demonstrate that (1) the great alignment between the annotation from our novel annotation framework and those from human, ensuring the reliability of VHD11K; (2) our full-spectrum harmful dataset successfully identifies the inability of existing harmful content detection methods to detect extensive harmful contents and improves the performance of existing harmfulness recognition methods; (3) our dataset outperforms the baseline dataset, SMID, as evidenced by the superior improvement in harmfulness recognition methods.
Fractal Patterns May Illuminate the Success of Next-Token Prediction
We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H = 0.70 0.09. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can capture the structure of text across multiple levels of granularity, from words and clauses to broader contexts and intents. In addition, we carry out an extensive analysis across different domains and architectures, showing that fractal parameters are robust. Finally, we demonstrate that the tiny variations in fractal parameters seen across LLMs improve upon perplexity-based bits-per-byte (BPB) in predicting their downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.