Query Processing
Top Ten Challenges Towards Agentic Neural Graph Databases
Bai, Jiaxin, Wang, Zihao, Zhou, Yukun, Yin, Hang, Fei, Weizhi, Hu, Qi, Deng, Zheye, Cheng, Jiayang, Zheng, Tianshi, Tsang, Hong Ting, Gao, Yisen, Xie, Zhongwei, Li, Yufei, Fan, Lixin, Yuan, Binhang, Wang, Wei, Chen, Lei, Zhou, Xiaofang, Song, Yangqiu
Graph databases (GDBs) like Neo4j and TigerGraph excel at handling interconnected data but lack advanced inference capabilities. Neural Graph Databases (NGDBs) address this by integrating Graph Neural Networks (GNNs) for predictive analysis and reasoning over incomplete or noisy data. However, NGDBs rely on predefined queries and lack autonomy and adaptability. This paper introduces Agentic Neural Graph Databases (Agentic NGDBs), which extend NGDBs with three core functionalities: autonomous query construction, neural query execution, and continuous learning. We identify ten key challenges in realizing Agentic NGDBs: semantic unit representation, abductive reasoning, scalable query execution, and integration with foundation models like large language models (LLMs). By addressing these challenges, Agentic NGDBs can enable intelligent, self-improving systems for modern data-driven applications, paving the way for adaptable and autonomous data management solutions.
Efficient Pure Exploration in Adaptive Round model
Tianyuan Jin, Jieming SHI, Xiaokui Xiao, Enhong Chen
In the adaptive setting, many multi-armed bandit applications allow the learner to adaptively draw samples and adjust sampling strategy in rounds. In many real applications, not only the query complexity but also the round complexity need to be optimized. In this paper, we study both PAC and exact top-k arm identification problems and design efficient algorithms considering both round complexity and query complexity.
Multi-Modality Transformer for E-Commerce: Inferring User Purchase Intention to Bridge the Query-Product Gap
Mallapragada, Srivatsa, Xie, Ying, Chawan, Varsha Rani, Hailat, Zeyad, Wang, Yuanbo
E-commerce click-stream data and product catalogs offer critical user behavior insights and product knowledge. This paper propose a multi-modal transformer termed as PINCER, that leverages the above data sources to transform initial user queries into pseudo-product representations. By tapping into these external data sources, our model can infer users' potential purchase intent from their limited queries and capture query relevant product features. We demonstrate our model's superior performance over state-of-the-art alternatives on e-commerce online retrieval in both controlled and real-world experiments. Our ablation studies confirm that the proposed transformer architecture and integrated learning strategies enable the mining of key data sources to infer purchase intent, extract product features, and enhance the transformation pipeline from queries to more accurate pseudo-product representations.
The Query Complexity of Cake Cutting
We consider the query complexity of cake cutting in the standard query model and give lower and upper bounds for computing approximately envy-free, perfect, and equitable allocations with the minimum number of cuts. The lower bounds are tight for computing contiguous envy-free allocations among n 3 players and for computing perfect and equitable allocations with minimum number of cuts between n 2 players. For \epsilon -envy-free allocations with contiguous pieces, we also give an upper bound of O(n/\epsilon) and lower bound of \Omega(\log(1/\epsilon)) queries for any number n \geq 3 of players.We also formalize moving knife procedures and show that a large subclass of this family, which captures all the known moving knife procedures, can be simulated efficiently with arbitrarily small error in the Robertson-Webb query model.
Optimal Query Complexities for Dynamic Trace Estimation
We consider the problem of minimizing the number of matrix-vector queries needed for accurate trace estimation in the dynamic setting where our underlying matrix is changing slowly, such as during an optimization process. Specifically, for any m matrices \mathbf{A}_1,...,\mathbf{A}_m with consecutive differences bounded in Schatten- 1 norm by \alpha, we provide a novel binary tree summation procedure that simultaneously estimates all m traces up to \epsilon error with \delta failure probability with an optimal query complexity of \widetilde{O}(m \alpha\sqrt{\log(1/\delta)}/\epsilon m\log(1/\delta)), improving the dependence on both \alpha and \delta from Dharangutte and Musco (NeurIPS, 2021). By using novel reductions to communication complexity and information-theoretic analyses of Gaussian matrices, we provide matching lower bounds for static and dynamic trace estimation in all relevant parameters, including the failure probability. Our lower bounds (1) give the first tight bounds for Hutchinson's estimator in the matrix-vector product model with Frobenius norm error {\it even in the static setting}, and (2) are the first unconditional lower bounds for dynamic trace estimation, resolving open questions of prior work.
Improved IR-based Bug Localization with Intelligent Relevance Feedback
Samir, Asif Mohammed, Rahman, Mohammad Masudur
Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs. Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code. However, they often struggle to bridge a critical gap between bug reports and code that requires in-depth contextual understanding, which goes beyond textual or semantic relevance. In this paper, we present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code with Large Language Models (LLM). It then leverages the LLM's feedback (a.k.a., Intelligent Relevance Feedback) to reformulate queries and re-rank source documents, improving bug localization. We evaluate BRaIn using a benchmark dataset, Bench4BL, and three performance metrics and compare it against six baseline techniques from the literature. Our experimental results show that BRaIn outperforms baselines by 87.6%, 89.5%, and 48.8% margins in MAP, MRR, and HIT@K, respectively. Additionally, it can localize approximately 52% of bugs that cannot be localized by the baseline techniques due to the poor quality of corresponding bug reports. By addressing the contextual gaps and introducing Intelligent Relevance Feedback, BRaIn advances not only theory but also improves IR-based bug localization.
CSSDM Ontology to Enable Continuity of Care Data Interoperability
Das, Subhashis, Naskar, Debashis, Gonzalez, Sara Rodriguez, Hussey, Pamela
The rapid advancement of digital technologies and recent global pandemic scenarios have led to a growing focus on how these technologies can enhance healthcare service delivery and workflow to address crises. Action plans that consolidate existing digital transformation programs are being reviewed to establish core infrastructure and foundations for sustainable healthcare solutions. Reforming health and social care to personalize home care, for example, can help avoid treatment in overcrowded acute hospital settings and improve the experiences and outcomes for both healthcare professionals and service users. In this information-intensive domain, addressing the interoperability challenge through standards-based roadmaps is crucial for enabling effective connections between health and social care services. This approach facilitates safe and trustworthy data workflows between different healthcare system providers. In this paper, we present a methodology for extracting, transforming, and loading data through a semi-automated process using a Common Semantic Standardized Data Model (CSSDM) to create personalized healthcare knowledge graph (KG). The CSSDM is grounded in the formal ontology of ISO 13940 ContSys and incorporates FHIR-based specifications to support structural attributes for generating KGs. We propose that the CSSDM facilitates data harmonization and linking, offering an alternative approach to interoperability. This approach promotes a novel form of collaboration between companies developing health information systems and cloud-enabled health services. Consequently, it provides multiple stakeholders with access to high-quality data and information sharing.
OpenMLDB: A Real-Time Relational Data Feature Computation System for Online ML
Zhou, Xuanhe, Zhou, Wei, Qi, Liguo, Zhang, Hao, Chen, Dihao, He, Bingsheng, Lu, Mian, Li, Guoliang, Wu, Fan, Chen, Yuqiang
Efficient and consistent feature computation is crucial for a wide range of online ML applications. Typically, feature computation is divided into two distinct phases, i.e., offline stage for model training and online stage for model serving. These phases often rely on execution engines with different interface languages and function implementations, causing significant inconsistencies. Moreover, many online ML features involve complex time-series computations (e.g., functions over varied-length table windows) that differ from standard streaming and analytical queries. Existing data processing systems (e.g., Spark, Flink, DuckDB) often incur multi-second latencies for these computations, making them unsuitable for real-time online ML applications that demand timely feature updates. This paper presents OpenMLDB, a feature computation system deployed in 4Paradigm's SageOne platform and over 100 real scenarios. Technically, OpenMLDB first employs a unified query plan generator for consistent computation results across the offline and online stages, significantly reducing feature deployment overhead. Second, OpenMLDB provides an online execution engine that resolves performance bottlenecks caused by long window computations (via pre-aggregation) and multi-table window unions (via data self-adjusting). It also provides a high-performance offline execution engine with window parallel optimization and time-aware data skew resolving. Third, OpenMLDB features a compact data format and stream-focused indexing to maximize memory usage and accelerate data access. Evaluations in testing and real workloads reveal significant performance improvements and resource savings compared to the baseline systems. The open community of OpenMLDB now has over 150 contributors and gained 1.6k stars on GitHub.
A Proposed Large Language Model-Based Smart Search for Archive System
Nguyen, Ha Dung, Nguyen, Thi-Hoang Anh, Nguyen, Thanh Binh
This study presents a novel framework for smart search in digital archival systems, leveraging the capabilities of Large Language Models (LLMs) to enhance information retrieval. By employing a Retrieval-Augmented Generation (RAG) approach, the framework enables the processing of natural language queries and transforming non-textual data into meaningful textual representations. The system integrates advanced metadata generation techniques, a hybrid retrieval mechanism, a router query engine, and robust response synthesis, the results proved search precision and relevance. We present the architecture and implementation of the system and evaluate its performance in four experiments concerning LLM efficiency, hybrid retrieval optimizations, multilingual query handling, and the impacts of individual components. Obtained results show significant improvements over conventional approaches and have demonstrated the potential of AI-powered systems to transform modern archival practices.
A Survey of Query Optimization in Large Language Models
\textit{Query Optimization} (QO) refers to techniques aimed at enhancing the efficiency and quality of Large Language Models (LLMs) in understanding and answering queries, especially complex ones in scenarios like Retrieval-Augmented Generation (RAG). Specifically, RAG mitigates the limitations of LLMs by dynamically retrieving and leveraging up-to-date relevant information, which provides a cost-effective solution to the challenge of LLMs producing plausible but potentially inaccurate responses. Recently, as RAG evolves and incorporates multiple components that influence its performance, QO has emerged as a critical element, playing a pivotal role in determining the effectiveness of RAG's retrieval stage in accurately sourcing the necessary multiple pieces of evidence to answer queries correctly. In this paper, we trace the evolution of QO techniques by summarizing and analyzing significant studies. Through an organized framework and categorization, we aim to consolidate existing QO techniques in RAG, elucidate their technological foundations, and highlight their potential to enhance the versatility and applications of LLMs.