Grammars & Parsing


Aroma: Using ML for code recommendation

#artificialintelligence

Thousands of engineers write the code to create our apps, which serve billions of people worldwide. This is no trivial task--our services have grown so diverse and complex that the codebase contains millions of lines of code that intersect with a wide variety of different systems, from messaging to image rendering. To simplify and speed the process of writing code that will make an impact on so many systems, engineers often want a way to find how someone else has handled a similar task. We created Aroma, a code-to-code search and recommendation tool that uses machine learning (ML) to make the process of gaining insights from big codebases much easier. Prior to Aroma, none of the existing tools fully addressed this problem.


Semantics, not syntax, creates NLU - Pat Inc - Medium

#artificialintelligence

A scientific hypothesis starts the process of scientific enquiry. False hypotheses can start the path to disaster, as was seen with the geocentric model of the'universe' in which heavenly bodies moved in circular orbits. It became heresy to suggest that orbits aren't circular around the stationary earth, leading to epicycles. It's a good story worth studying in school to appreciate how a hypothesis is critical to validating science. Here's an important hypothesis: "The fundamental aim in the linguistic analysis of a language L is to separate the grammatical sequences which are the sentences of L from the ungrammatical sequences which are not sentences of L and to study the structure of the grammatical sequences."


Text IQ, a machine learning platform for parsing sensitive corporate data, raises $12.6M – TechCrunch

#artificialintelligence

Text IQ, a machine learning system that parses and understands sensitive corporate data, has raised $12.6 million in Series A funding led by FirstMark Capital, with participation from Sierra Ventures. Text IQ started as co-founder Apoorv Agarwal's Columbia thesis project titled "Social Network Extraction From Text." The algorithm he built was able to read a novel, like Jane Austen's "Emma," for example, and understand the social hierarchy and interactions between characters. This people-centric approach to parsing unstructured data eventually became the kernel of Text IQ, which helps corporations find what they're looking for in a sea of unstructured, and highly sensitive, data. The platform started as a tool used by corporate legal teams.


SEntNet: Source-aware Recurrent Entity Network for Dialogue Response Selection

arXiv.org Artificial Intelligence

Dialogue response selection is an important part of Task-oriented Dialogue Systems (TDSs); it aims to predict an appropriate response given a dialogue context. Obtaining key information from a complex, long dialogue context is challenging, especially when different sources of information are available, e.g., the user's utterances, the system's responses, and results retrieved from a knowledge base (KB). Previous work ignores the type of information source and merges sources for response selection. However, accounting for the source type may lead to remarkable differences in the quality of response selection. We propose the Source-aware Recurrent Entity Network (SEntNet), which is aware of different information sources for the response selection process. SEntNet achieves this by employing source-specific memories to exploit differences in the usage of words and syntactic structure from different information sources (user, system, and KB). Experimental results show that SEntNet obtains 91.0% accuracy on the Dialog bAbI dataset, outperforming prior work by 4.7%. On the DSTC2 dataset, SEntNet obtains an accuracy of 41.2%, beating source unaware recurrent entity networks by 2.4%.


Analyzing the Structure of Attention in a Transformer Language Model

arXiv.org Machine Learning

The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transformer language model, the GPT-2 small pretrained model. We visualize attention for individual instances and analyze the interaction between attention and syntax over a large corpus. We find that attention targets different parts of speech at different layer depths within the model, and that attention aligns with dependency relations most strongly in the middle layers. We also find that the deepest layers of the model capture the most distant relationships. Finally, we extract exemplar sentences that reveal highly specific patterns targeted by particular attention heads.


uma-pi1/OPIEC-pipeline

#artificialintelligence

OPIEC is an Open Information Extraction (OIE) corpus, consisted of more than 341M triples extracted from the entire English Wikipedia. Each triple from the corpus is consisted of rich meta-data: each token from the subj/obj/rel along with NLP annotations (POS tag, NER tag, ...), provenance sentence along with the dependency parse, original (golden) links from Wikipedia, sentence order, space/time, etc (for more detailed explanation of the meta-data, see here). For more details concerning the construction, analysis and statistics of the corpus, read the AKBC paper "OPIEC: An Open Information Extraction Corpus". To download the data and get additional resources, please visit the project page. For reading the data, please visit the GitHub repository OPIEC.


Using Structured Representation and Data: A Hybrid Model for Negation and Sentiment in Customer Service Conversations

arXiv.org Artificial Intelligence

Twitter customer service interactions have recently emerged as an effective platform to respond and engage with customers. In this work, we explore the role of negation in customer service interactions, particularly applied to sentiment analysis. We define rules to identify true negation cues and scope more suited to conversational data than existing general review data. Using semantic knowledge and syntactic structure from constituency parse trees, we propose an algorithm for scope detection that performs comparable to state of the art BiLSTM. We further investigate the results of negation scope detection for the sentiment prediction task on customer service conversation data using both a traditional SVM and a Neural Network. We propose an antonym dictionary based method for negation applied to a CNN-LSTM combination model for sentiment analysis. Experimental results show that the antonym-based method outperforms the previous lexicon-based and neural network methods.


Reinforcement Learning of Minimalist Numeral Grammars

arXiv.org Artificial Intelligence

Speech-controlled user interfaces facilitate the operation of devices and household functions to laymen. State-of-the-art language technology scans the acoustically analyzed speech signal for relevant keywords that are subsequently inserted into semantic slots to interpret the user's intent. In order to develop proper cognitive information and communication technologies, simple slot-filling should be replaced by utterance meaning transducers (UMT) that are based on semantic parsers and a \emph{mental lexicon}, comprising syntactic, phonetic and semantic features of the language under consideration. This lexicon must be acquired by a cognitive agent during interaction with its users. We outline a reinforcement learning algorithm for the acquisition of the syntactic morphology and arithmetic semantics of English numerals, based on minimalist grammar (MG), a recent computational implementation of generative linguistics. Number words are presented to the agent by a teacher in form of utterance meaning pairs (UMP) where the meanings are encoded as arithmetic terms from a suitable term algebra. Since MG encodes universal linguistic competence through inference rules, thereby separating innate linguistic knowledge from the contingently acquired lexicon, our approach unifies generative grammar and reinforcement learning, hence potentially resolving the still pending Chomsky-Skinner controversy.


Learning to combine Grammatical Error Corrections

arXiv.org Artificial Intelligence

The field of Grammatical Error Correction (GEC) has produced various systems to deal with focused phenomena or general text editing. We propose an automatic way to combine black-box systems. Our method automatically detects the strength of a system or the combination of several systems per error type, improving precision and recall while optimizing $F$ score directly. We show consistent improvement over the best standalone system in all the configurations tested. This approach also outperforms average ensembling of different RNN models with random initializations. In addition, we analyze the use of BERT for GEC - reporting promising results on this end. We also present a spellchecker created for this task which outperforms standard spellcheckers tested on the task of spellchecking. This paper describes a system submission to Building Educational Applications 2019 Shared Task: Grammatical Error Correction. Combining the output of top BEA 2019 shared task systems using our approach, currently holds the highest reported score in the open phase of the BEA 2019 shared task, improving F0.5 by 3.7 points over the best result reported.


SParC: Cross-Domain Semantic Parsing in Context

arXiv.org Artificial Intelligence

We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.