Goto

Collaborating Authors

 Unsupervised or Indirectly Supervised Learning


Reinforcement Learning Guided Semi-Supervised Learning

Neural Information Processing Systems

In recent years, semi-supervised learning (SSL) has gained significant attention due to its ability to leverage both labeled and unlabeled data to improve model performance, especially when labeled data is scarce. However, most current SSL methods rely on heuristics or predefined rules for generating pseudo-labels and leveraging unlabeled data. They are limited to exploiting loss functions and regularization methods within the standard norm. In this paper, we propose a novel Reinforcement Learning (RL) Guided SSL method, RLGSSL, that formulates SSL as a one-armed bandit problem and deploys an innovative RL loss based on weighted reward to adaptively guide the learning process of the prediction model. RLGSSL incorporates a carefully designed reward function that balances the use of labeled and unlabeled data to enhance generalization performance.


HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks

Neural Information Processing Systems

Domain adaptation framework of GANs has achieved great progress in recent years as a main successful approach of training contemporary GANs in the case of very limited training data. In this work, we significantly improve this framework by proposing an extremely compact parameter space for fine-tuning the generator. We introduce a novel domain-modulation technique that allows to optimize only 6 thousand-dimensional vector instead of 30 million weights of StyleGAN2 to adapt to a target domain. We apply this parameterization to the state-of-art domain adaptation methods and show that it has almost the same expressiveness as the full parameter space. Additionally, we propose a new regularization loss that considerably enhances the diversity of the fine-tuned generator.


Unlocking the Potential of Unlabeled Data in Semi-Supervised Domain Generalization

arXiv.org Artificial Intelligence

We address the problem of semi-supervised domain generalization (SSDG), where the distributions of train and test data differ, and only a small amount of labeled data along with a larger amount of unlabeled data are available during training. Existing SSDG methods that leverage only the unlabeled samples for which the model's predictions are highly confident (confident-unlabeled samples), limit the full utilization of the available unlabeled data. To the best of our knowledge, we are the first to explore a method for incorporating the unconfident-unlabeled samples that were previously disregarded in SSDG setting. To this end, we propose UPCSC to utilize these unconfident-unlabeled samples in SSDG that consists of two modules: 1) Unlabeled Proxy-based Contrastive learning (UPC) module, treating unconfident-unlabeled samples as additional negative pairs and 2) Surrogate Class learning (SC) module, generating positive pairs for unconfident-unlabeled samples using their confusing class set. These modules are plug-and-play and do not require any domain labels, which can be easily integrated into existing approaches. Experiments on four widely used SSDG benchmarks demonstrate that our approach consistently improves performance when attached to baselines and outperforms competing plug-and-play methods. We also analyze the role of our method in SSDG, showing that it enhances class-level discriminability and mitigates domain gaps. The code is available at https://github.com/dongkwani/UPCSC.


Boosting Semi-Supervised Medical Image Segmentation via Masked Image Consistency and Discrepancy Learning

arXiv.org Artificial Intelligence

Semi-supervised learning is of great significance in medical image segmentation by exploiting unlabeled data. Among its strategies, the co-training framework is prominent. However, previous co-training studies predominantly concentrate on network initialization variances and pseudo-label generation, while overlooking the equilibrium between information interchange and model diversity preservation. In this paper, we propose the Masked Image Consistency and Discrepancy Learning (MICD) framework with three key modules. The Masked Cross Pseudo Consistency (MCPC) module enriches context perception and small sample learning via pseudo-labeling across masked-input branches. The Cross Feature Consistency (CFC) module fortifies information exchange and model robustness by ensuring decoder feature consistency. The Cross Model Discrepancy (CMD) module utilizes EMA teacher networks to oversee outputs and preserve branch diversity. Together, these modules address existing limitations by focusing on fine-grained local information and maintaining diversity in a heterogeneous framework. Experiments on two public medical image datasets, AMOS and Synapse, demonstrate that our approach outperforms state-of-the-art methods.


Compositional Generalization in Unsupervised Compositional Representation Learning: A Study on Disentanglement and Emergent Language

Neural Information Processing Systems

Deep learning models struggle with compositional generalization, i.e. the ability to recognize or generate novel combinations of observed elementary concepts. In hopes of enabling compositional generalization, various unsupervised learning algorithms have been proposed with inductive biases that aim to induce compositional structure in learned representations (e.g. In this work, we evaluate these unsupervised learning algorithms in terms of how well they enable \textit{compositional generalization}. Specifically, our evaluation protocol focuses on whether or not it is easy to train a simple model on top of the learned representation that generalizes to new combinations of compositional factors. We systematically study three unsupervised representation learning algorithms - \beta -VAE, \beta -TCVAE, and emergent language (EL) autoencoders - on two datasets that allow directly testing compositional generalization.


Doubly-Robust Self-Training

Neural Information Processing Systems

Self-training is a well-established technique in semi-supervised learning, which leverages unlabeled data by generating pseudo-labels and incorporating them with a limited labeled dataset for training. The effectiveness of self-training heavily relies on the accuracy of these pseudo-labels. In this paper, we introduce doubly-robust self-training, an innovative semi-supervised algorithm that provably balances between two extremes. When pseudo-labels are entirely incorrect, our method reduces to a training process solely using labeled data. Conversely, when pseudo-labels are completely accurate, our method transforms into a training process utilizing all pseudo-labeled data and labeled data, thus increasing the effective sample size.


Enhancing Semi-Supervised Learning via Representative and Diverse Sample Selection

Neural Information Processing Systems

Semi-Supervised Learning (SSL) has become a preferred paradigm in many deep learning tasks, which reduces the need for human labor. Previous studies primarily focus on effectively utilising the labelled and unlabeled data to improve performance. However, we observe that how to select samples for labelling also significantly impacts performance, particularly under extremely low-budget settings. The sample selection task in SSL has been under-explored for a long time. To fill in this gap, we propose a Representative and Diverse Sample Selection approach (RDSS).


How Well Do Unsupervised Learning Algorithms Model Human Real-time and Life-long Learning?

Neural Information Processing Systems

Humans learn from visual inputs at multiple timescales, both rapidly and flexibly acquiring visual knowledge over short periods, and robustly accumulating online learning progress over longer periods. Modeling these powerful learning capabilities is an important problem for computational visual cognitive science, and models that could replicate them would be of substantial utility in real-world computer vision settings. In this work, we establish benchmarks for both real-time and life-long continual visual learning. Our real-time learning benchmark measures a model's ability to match the rapid visual behavior changes of real humans over the course of minutes and hours, given a stream of visual inputs. Our life-long learning benchmark evaluates the performance of models in a purely online learning curriculum obtained directly from child visual experience over the course of years of development.


Schrodinger Bridge Flow for Unpaired Data Translation

Neural Information Processing Systems

Mass transport problems arise in many areas of machine learning whereby one wants to compute a map transporting one distribution to another. Generative modeling techniques like Generative Adversarial Networks (GANs) and Denoising Diffusion Models (DMMs) have been successfully adapted to solve such transport problems, resulting in CycleGAN and Bridge Matching respectively. However, these methods do not approximate Optimal Transport (OT) maps, which are known to have desirable properties. Existing techniques approximating OT maps for high-dimensional data-rich problems, including DDMs-based Rectified Flow and Schrodinger bridge procedures, require fully training a DDM-type model at each iteration, or use mini-batch techniques which can introduce significant errors. We propose a novel algorithm to compute the Schrodinger bridge, a dynamic entropy-regularized version of OT, that eliminates the need to train multiple DDMs-like models. This algorithm corresponds to a discretization of a flow of path measures, referred to as the Schrodinger Bridge Flow, whose only stationary point is the Schrodinger bridge.


OwMatch: Conditional Self-Labeling with Consistency for Open-World Semi-Supervised Learning

Neural Information Processing Systems

Semi-supervised learning (SSL) offers a robust framework for harnessing the potential of unannotated data. Traditionally, SSL mandates that all classes possess labeled instances. However, the emergence of open-world SSL (OwSSL) introduces a more practical challenge, wherein unlabeled data may encompass samples from unseen classes. This scenario leads to misclassification of unseen classes as known ones, consequently undermining classification accuracy. To overcome this challenge, this study revisits two methodologies from self-supervised and semi-supervised learning, self-labeling and consistency, tailoring them to address the OwSSL problem.