Unsupervised or Indirectly Supervised Learning
Semi-supervised MarginBoost
D', alchรฉ-buc, Florence, Grandvalet, Yves, Ambroise, Christophe
In many discrimination problems a large amount of data is available but only a few of them are labeled. This provides a strong motivation to improve or develop methods for semi-supervised learning. In this paper, boosting is generalized to this task within the optimization framework of MarginBoost . We extend the margin definition to unlabeled data and develop the gradient descent algorithm that corresponds to the resulting margin cost function. This meta-learning scheme can be applied to any base classifier able to benefit from unlabeled data. We propose here to apply it to mixture models trained with an Expectation-Maximization algorithm. Promising results are presented on benchmarks with different rates of labeled data.
Unsupervised Learning of Human Motion Models
Song, Yang, Goncalves, Luis, Perona, Pietro
This paper presents an unsupervised learning algorithm that can derive the probabilistic dependence structure of parts of an object (a moving human bodyin our examples) automatically from unlabeled data. The distinguished partof this work is that it is based on unlabeled data, i.e., the training features include both useful foreground parts and background clutter and the correspondence between the parts and detected features are unknown. We use decomposable triangulated graphs to depict the probabilistic independence of parts, but the unsupervised technique is not limited to this type of graph. In the new approach, labeling of the data (part assignments) is taken as hidden variables and the EM algorithm isapplied. A greedy algorithm is developed to select parts and to search for the optimal structure based on the differential entropy of these variables. The success of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled real image sequences.
Unsupervised Learning: Foundations of Neural Computation
Unsupervised Learning: Foundations of Neural Computation is a collection of 21 papers published in the journal Neural Computation in the 10-year period since its founding in 1989 by Terrence Sejnowski. Neural Computation has become the leading journal of its kind. The editors of the book are Geoffrey Hinton and Terrence Sejnowski, two pioneers in neural networks. The selected papers include some of the most influential titles of late, for example, "What Is the Goal of Sensory Coding" by David Field and "An Information-Maximization Approach to Blind Separation and Blind Deconvolution" by Anthony Bell and Terrence Sejnowski. The edited volume provides a sample of important works on unsupervised learning, which cut across the fields of
Using Unlabeled Data for Supervised Learning
For example, it is trivial to record hours of heartbeats from hundreds of patients. However, it is expensive to hire cardiologists to label each of the recorded beats. One response to the expense of class labels is to squeeze the most information possible out of each labeled example. Regularization and cross-validation both have this goal. A second response is to start with a small set of labeled examples and request labels of only those currently unlabeled examples that are expected to provide a significant improvement in the behavior of the classifier (Lewis & Catlett, 1994; Freund et al., 1993). A third response is to tap into a largely ignored potential source of information; namely, unlabeled examples. This response is supported by the theoretical work of Castelli and Cover (1995) which suggests that unlabeled examples have value in learning classification problems.
Unsupervised Learning of Mixtures of Multiple Causes in Binary Data
This paper presents a formulation for unsupervised learning of clusters reflectingmultiple causal structure in binary data. Unlike the standard mixture model, a multiple cause model accounts for observed databy combining assertions from many hidden causes, each of which can pertain to varying degree to any subset of the observable dimensions.A crucial issue is the mixing-function for combining beliefs from different cluster-centers in order to generate data reconstructions whose errors are minimized both during recognition and learning. We demonstrate a weakness inherent to the popular weighted sum followed by sigmoid squashing, and offer an alternative formof the nonlinearity. Results are presented demonstrating the algorithm's ability successfully to discover coherent multiple causal representat.ions of noisy test data and in images of printed characters. 1 Introduction The objective of unsupervised learning is to identify patterns or features reflecting underlying regularities in data. Single-cause techniques, including the k-means algorithm andthe standard mixture-model (Duda and Hart, 1973), represent clusters of data points sharing similar patterns of Is and Os under the assumption that each data point belongs to, or was generated by, one and only one cluster-center; output activity is constrained to sum to 1. In contrast, a multiple-cause model permits more than one cluster-center to become fully active in accounting for an observed data vector. The advantage of a multiple cause model is that a relatively small number 27 28 Saund of hidden variables can be applied combinatorially to generate a large data set.
Learning Classification with Unlabeled Data
We represent objects with n-dimensional pattern vectors and consider piecewise-linear classifiers consisting of a collection of (labeled) codebook vectors in the space of the input patterns (See Figure 1). The classification boundaries are gi ven by the voronoi tessellation of the codebook vectors. Patterns are said to belong to the class (given by the label) of the codebook vector to which they are closest.
Unsupervised Learning of Mixtures of Multiple Causes in Binary Data
This paper presents a formulation for unsupervised learning of clusters reflecting multiple causal structure in binary data. Unlike the standard mixture model, a multiple cause model accounts for observed data by combining assertions from many hidden causes, each of which can pertain to varying degree to any subset of the observable dimensions. A crucial issue is the mixing-function for combining beliefs from different cluster-centers in order to generate data reconstructions whose errors are minimized both during recognition and learning. We demonstrate a weakness inherent to the popular weighted sum followed by sigmoid squashing, and offer an alternative form of the nonlinearity. Results are presented demonstrating the algorithm's ability successfully to discover coherent multiple causal representat.ions of noisy test data and in images of printed characters. 1 Introduction The objective of unsupervised learning is to identify patterns or features reflecting underlying regularities in data. Single-cause techniques, including the k-means algorithm and the standard mixture-model (Duda and Hart, 1973), represent clusters of data points sharing similar patterns of Is and Os under the assumption that each data point belongs to, or was generated by, one and only one cluster-center; output activity is constrained to sum to 1. In contrast, a multiple-cause model permits more than one cluster-center to become fully active in accounting for an observed data vector.
Unsupervised Learning in Neurodynamics Using the Phase Velocity Field Approach
Zak, Michail, Toomarian, Nikzad Benny
A new concept for unsupervised learning based upon examples introduced to the neural network is proposed. Each example is considered as an interpolation node of the velocity field in the phase space. The velocities at these nodes are selected such that all the streamlines converge to an attracting set imbedded in the subspace occupied by the cluster of examples. The synaptic interconnections are found from learning procedure providing selected field. The theory is illustrated by examples. This paper is devoted to development of a new concept for unsupervised learning based upon examples introduced to an artificial neural network.
Unsupervised Learning in Neurodynamics Using the Phase Velocity Field Approach
Zak, Michail, Toomarian, Nikzad Benny
A new concept for unsupervised learning based upon examples introduced tothe neural network is proposed. Each example is considered as an interpolation node of the velocity field in the phase space. The velocities at these nodes are selected such that all the streamlines converge to an attracting set imbedded in the subspace occupied by the cluster of examples. The synaptic interconnections are found from learning procedure providing selected field. The theory is illustrated by examples. This paper is devoted to development of a new concept for unsupervised learning based upon examples introduced to an artificial neural network.
Unsupervised Learning in Neurodynamics Using the Phase Velocity Field Approach
Zak, Michail, Toomarian, Nikzad Benny
A new concept for unsupervised learning based upon examples introduced to the neural network is proposed. Each example is considered as an interpolation node of the velocity field in the phase space. The velocities at these nodes are selected such that all the streamlines converge to an attracting set imbedded in the subspace occupied by the cluster of examples. The synaptic interconnections are found from learning procedure providing selected field. The theory is illustrated by examples. This paper is devoted to development of a new concept for unsupervised learning based upon examples introduced to an artificial neural network.