Goto

Collaborating Authors

 Unsupervised or Indirectly Supervised Learning


Learning from Concept Drifting Data Streams with Unlabeled Data

AAAI Conferences

Contrary to the previous beliefs that all arrived streaming data are labeled and the class labels are immediately availa- ble, we propose a Semi-supervised classification algorithm for data streams with concept drifts and UNlabeled data, called SUN. SUN is based on an evolved decision tree. In terms of deviation between history concept clusters and new ones generated by a developed clustering algorithm of k-Modes, concept drifts are distinguished from noise at leaves. Extensive studies on both synthetic and real data demonstrate that SUN performs well compared to several known online algorithms on unlabeled data. A conclusion is hence drawn that a feasible reference framework is provided for tackling concept drifting data streams with unlabeled data.


Statistical Analysis of Semi-Supervised Learning: The Limit of Infinite Unlabelled Data

Neural Information Processing Systems

We study the behavior of the popular Laplacian Regularization method for Semi-Supervised Learning at the regime of a fixed number of labeled points but a large number of unlabeled points. We show that in $\R^d$, $d \geq 2$, the method is actually not well-posed, and as the number of unlabeled points increases the solution degenerates to a noninformative function. We also contrast the method with the Laplacian Eigenvector method, and discuss the ``smoothness assumptions associated with this alternate method.


Semi-supervised Learning using Sparse Eigenfunction Bases

Neural Information Processing Systems

We present a new framework for semi-supervised learning with sparse eigenfunction bases of kernel matrices. It turns out that when the \emph{cluster assumption} holds, that is, when the high density regions are sufficiently separated by low density valleys, each high density area corresponds to a unique representative eigenvector. Linear combination of such eigenvectors (or, more precisely, of their Nystrom extensions) provide good candidates for good classification functions. By first choosing an appropriate basis of these eigenvectors from unlabeled data and then using labeled data with Lasso to select a classifier in the span of these eigenvectors, we obtain a classifier, which has a very sparse representation in this basis. Importantly, the sparsity appears naturally from the cluster assumption. Experimental results on a number of real-world data-sets show that our method is competitive with the state of the art semi-supervised learning algorithms and outperforms the natural base-line algorithm (Lasso in the Kernel PCA basis).


A Transductive Bound for the Voted Classifier with an Application to Semi-supervised Learning

Neural Information Processing Systems

In this paper we present two transductive bounds on the risk of the majority vote estimated over partially labeled training sets. Our first bound is tight when the additional unlabeled training data are used in the cases where the voted classifier makes its errors on low margin observations and where the errors of the associated Gibbs classifier can accurately be estimated. In semi-supervised learning, considering the margin as an indicator of confidence constitutes the working hypothesis of algorithms which search the decision boundary on low density regions. In this case, we propose a second bound on the joint probability that the voted classifier makes an error over an example having its margin over a fixed threshold. As an application we are interested on self-learning algorithms which assign iteratively pseudo-labels to unlabeled training examples having margin above a threshold obtained from this bound. Empirical results on different datasets show the effectiveness of our approach compared to the same algorithm and the TSVM in which the threshold is fixed manually.


A ``Shape Aware'' Model for semi-supervised Learning of Objects and its Context

Neural Information Processing Systems

Integrating semantic and syntactic analysis is essential for document analysis. Using an analogous reasoning, we present an approach that combines bag-of-words and spatial models to perform semantic and syntactic analysis for recognition of an object based on its internal appearance and its context. We argue that while object recognition requires modeling relative spatial locations of image features within the object, a bag-of-word is sufficient for representing context. Learning such a model from weakly labeled data involves labeling of features into two classes: foreground(object) or ''informative'' background(context). labeling. We present a ''shape-aware'' model which utilizes contour information for efficient and accurate labeling of features in the image. Our approach iterates between an MCMC-based labeling and contour based labeling of features to integrate co-occurrence of features and shape similarity.


Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Neural Information Processing Systems

In this paper, we address the question of what kind of knowledge is generally transferable from unlabeled text. We suggest and analyze the semantic correlation of words as a generally transferable structure of the language and propose a new method to learn this structure using an appropriately chosen latent variable model. This semantic correlation contains structural information of the language space and can be used to control the joint shrinkage of model parameters for any specific task in the same space through regularization. In an empirical study, we construct 190 different text classification tasks from a real-world benchmark, and the unlabeled documents are a mixture from all these tasks. We test the ability of various algorithms to use the mixed unlabeled text to enhance all classification tasks. Empirical results show that the proposed approach is a reliable and scalable method for semi-supervised learning, regardless of the source of unlabeled data, the specific task to be enhanced, and the prediction model used.


Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization

Neural Information Processing Systems

The cluster assumption is exploited by most semi-supervised learning (SSL) methods. However, if the unlabeled data is merely weakly related to the target classes, it becomes questionable whether driving the decision boundary to the low density regions of the unlabeled data will help the classification. In such case, the cluster assumption may not be valid; and consequently how to leverage this type of unlabeled data to enhance the classification accuracy becomes a challenge. We introduce Semi-supervised Learning with Weakly-Related Unlabeled Data" (SSLW), an inductive method that builds upon the maximum-margin approach, towards a better usage of weakly-related unlabeled information. Although the SSLW could improve a wide range of classification tasks, in this paper, we focus on text categorization with a small training pool. The key assumption behind this work is that, even with different topics, the word usage patterns across different corpora tends to be consistent. To this end, SSLW estimates the optimal word-correlation matrix that is consistent with both the co-occurrence information derived from the weakly-related unlabeled documents and the labeled documents. For empirical evaluation, we present a direct comparison with a number of state-of-the-art methods for inductive semi-supervised learning and text categorization; and we show that SSLW results in a significant improvement in categorization accuracy, equipped with a small training set and an unlabeled resource that is weakly related to the test beds."


Semi-Supervised Learning in Gigantic Image Collections

Neural Information Processing Systems

With the advent of the Internet it is now possible to collect hundreds of millions of images. These images come with varying degrees of label information. ``Clean labels can be manually obtained on a small fraction, ``noisy labels may be extracted automatically from surrounding text, while for most images there are no labels at all. Semi-supervised learning is a principled framework for combining these different label sources. However, it scales polynomially with the number of images, making it impractical for use on gigantic collections with hundreds of millions of images and thousands of classes. In this paper we show how to utilize recent results in machine learning to obtain highly efficient approximations for semi-supervised learning that are linear in the number of images.  Specifically, we use the convergence of the eigenvectors of the normalized graph Laplacian to eigenfunctions of weighted Laplace-Beltrami operators. We combine this with a label sharing framework obtained from Wordnet to propagate label information to classes lacking manual annotations. Our algorithm enables us to apply semi-supervised learning to a database of 80 million images with 74 thousand classes.


A Rate Distortion Approach for Semi-Supervised Conditional Random Fields

Neural Information Processing Systems

We propose a novel information theoretic approach for semi-supervised learning of conditional random fields. Our approach defines a training objective that combines the conditional likelihood on labeled data and the mutual information on unlabeled data. Different from previous minimum conditional entropy semi-supervised discriminative learning methods, our approach can be naturally cast into the rate distortion theory framework in information theory. We analyze the tractability of the framework for structured prediction and present a convergent variational training algorithm to defy the combinatorial explosion of terms in the sum over label configurations. Our experimental results show that the rate distortion approach outperforms standard $l_2$ regularization and minimum conditional entropy regularization on both multi-class classification and sequence labeling problems.


Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity

Neural Information Processing Systems

Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting state activity can be used as a source of unlabeled data to augment discriminative regression techniques in a semi-supervised setting. We evaluate this setting empirically yielding three main results: (i) regression tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data may have a similar marginal distribution to that recorded during the execution of a visual processing task reinforcing the hypothesis that these conditions have similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.