Goto

Collaborating Authors

 Unsupervised or Indirectly Supervised Learning


Active Semi-Supervised Learning Using Sampling Theory for Graph Signals

arXiv.org Machine Learning

We consider the problem of offline, pool-based active semi-supervised learning on graphs. This problem is important when the labeled data is scarce and expensive whereas unlabeled data is easily available. The data points are represented by the vertices of an undirected graph with the similarity between them captured by the edge weights. Given a target number of nodes to label, the goal is to choose those nodes that are most informative and then predict the unknown labels. We propose a novel framework for this problem based on our recent results on sampling theory for graph signals. A graph signal is a real-valued function defined on each node of the graph. A notion of frequency for such signals can be defined using the spectrum of the graph Laplacian matrix. The sampling theory for graph signals aims to extend the traditional Nyquist-Shannon sampling theory by allowing us to identify the class of graph signals that can be reconstructed from their values on a subset of vertices. This approach allows us to define a criterion for active learning based on sampling set selection which aims at maximizing the frequency of the signals that can be reconstructed from their samples on the set. Experiments show the effectiveness of our method.


Justifying Information-Geometric Causal Inference

arXiv.org Machine Learning

Information Geometric Causal Inference (IGCI) is a new approach to distinguish between cause and effect for two variables. It is based on an independence assumption between input distribution and causal mechanism that can be phrased in terms of orthogonality in information space. We describe two intuitive reinterpretations of this approach that makes IGCI more accessible to a broader audience. Moreover, we show that the described independence is related to the hypothesis that unsupervised learning and semi-supervised learning only works for predicting the cause from the effect and not vice versa.


Transfer Learning in a Transductive Setting

Neural Information Processing Systems

Category models for objects or activities typically rely on supervised learning requiring sufficiently large training sets. Transferring knowledge from known categories to novel classes with no or only a few labels however is far less researched even though it is a common scenario. In this work, we extend transfer learning with semi-supervised learning to exploit unlabeled instances of (novel) categories with no or only a few labeled instances. Our proposed approach Propagated Semantic Transfer combines three main ingredients. First, we transfer information from known to novel categories by incorporating external knowledge, such as linguistic or expert-specified information, e.g., by a mid-level layer of semantic attributes. Second, we exploit the manifold structure of novel classes. More specifically we adapt a graph-based learning algorithm - so far only used for semi-supervised learning - to zero-shot and few-shot learning. Third, we improve the local neighborhood in such graph structures by replacing the raw feature-based representation with a mid-level object- or attribute-based representation. We evaluate our approach on three challenging datasets in two different applications, namely on Animals with Attributes and ImageNet for image classification and on MPII Composites for activity recognition. Our approach consistently outperforms state-of-the-art transfer and semi-supervised approaches on all datasets.


Correlated random features for fast semi-supervised learning

Neural Information Processing Systems

This paper presents Correlated Nystrom Views (XNV), a fast semi-supervised algorithm for regression and classification. The algorithm draws on two main ideas. First, it generates two views consisting of computationally inexpensive random features. Second, multiview regression, using Canonical Correlation Analysis (CCA) on unlabeled data, biases the regression towards useful features. It has been shown that CCA regression can substantially reduce variance with a minimal increase in bias if the views contains accurate estimators. Recent theoretical and empirical work shows that regression with random features closely approximates kernel regression, implying that the accuracy requirement holds for random views. We show that XNV consistently outperforms a state-of-the-art algorithm for semi-supervised learning: substantially improving predictive performance and reducing the variability of performance on a wide variety of real-world datasets, whilst also reducing runtime by orders of magnitude.


Unsupervised learning human's activities by overexpressed recognized non-speech sounds

arXiv.org Artificial Intelligence

Human activity and environment produces sounds such as, at home, the noise produced by water, cough, or television. These sounds can be used to determine the activity in the environment. The objective is to monitor a person's activity or determine his environment using a single low cost microphone by sound analysis. The purpose is to adapt programs to the activity or environment or detect abnormal situations. Some patterns of over expressed repeatedly in the sequences of recognized sounds inter and intra environment allow to characterize activities such as the entrance of a person in the house, or a tv program watched. We first manually annotated 1500 sounds of daily life activity of old persons living at home recognized sounds. Then we inferred an ontology and enriched the database of annotation with a crowed sourced manual annotation of 7500 sounds to help with the annotation of the most frequent sounds. Using learning sound algorithms, we defined 50 types of the most frequent sounds. We used this set of recognizable sounds as a base to tag sounds and put tags on them. By using over expressed number of motifs of sequences of the tags, we were able to categorize using only a single low-cost microphone, complex activities of daily life of a persona at home as watching TV, entrance in the apartment of a person, or phone conversation including detecting unknown activities as repeated tasks performed by users.


Correlated random features for fast semi-supervised learning

arXiv.org Machine Learning

This paper presents Correlated Nystrom Views (XNV), a fast semi-supervised algorithm for regression and classification. The algorithm draws on two main ideas. First, it generates two views consisting of computationally inexpensive random features. Second, XNV applies multiview regression using Canonical Correlation Analysis (CCA) on unlabeled data to bias the regression towards useful features. It has been shown that, if the views contains accurate estimators, CCA regression can substantially reduce variance with a minimal increase in bias. Random views are justified by recent theoretical and empirical work showing that regression with random features closely approximates kernel regression, implying that random views can be expected to contain accurate estimators. We show that XNV consistently outperforms a state-of-the-art algorithm for semi-supervised learning: substantially improving predictive performance and reducing the variability of performance on a wide variety of real-world datasets, whilst also reducing runtime by orders of magnitude.


Randomized co-training: from cortical neurons to machine learning and back again

arXiv.org Machine Learning

Despite its size and complexity, the human cortex exhibits striking anatomical regularities, suggesting there may simple meta-algorithms underlying cortical learning and computation. We expect such meta-algorithms to be of interest since they need to operate quickly, scalably and effectively with little-to-no specialized assumptions. This note focuses on a specific question: How can neurons use vast quantities of unlabeled data to speed up learning from the comparatively rare labels provided by reward systems? As a partial answer, we propose randomized co-training as a biologically plausible meta-algorithm satisfying the above requirements. As evidence, we describe a biologically-inspired algorithm, Correlated Nystrom Views (XNV) that achieves state-of-the-art performance in semi-supervised learning, and sketch work in progress on a neuronal implementation.


Exploring the Contribution of Unlabeled Data in Financial Sentiment Analysis

AAAI Conferences

With the proliferation of its applications in various industries, sentiment analysis by using publicly available web data has become an active research area in text classification during these years. It is argued by researchers that semi-supervised learning is an effective approach to this problem since it is capable to mitigate the manual labeling effort which is usually expensive and time-consuming. However, there was a long-term debate on the effectiveness of unlabeled data in text classification. This was partially caused by the fact that many assumptions in theoretic analysis often do not hold in practice. We argue that this problem may be further understood by adding an additional dimension in the experiment. This allows us to address this problem in the perspective of bias and variance in a broader view. We show that the well-known performance degradation issue caused by unlabeled data can be reproduced as a subset of the whole scenario. We argue that if the bias-variance trade-off is to be better balanced by a more effective feature selection method unlabeled data is very likely to boost the classification performance. We then propose a feature selection framework in which labeled and unlabeled training samples are both considered. We discuss its potential in achieving such a balance. Besides, the application in financial sentiment analysis is chosen because it not only exemplifies an important application, the data possesses better illustrative power as well. The implications of this study in text classification and financial sentiment analysis are both discussed.


Privileged Information for Data Clustering

arXiv.org Machine Learning

Many machine learning algorithms assume that all input samples are independently and identically distributed from some common distribution on either the input space X, in the case of unsupervised learning, or the input and output space X x Y in the case of supervised and semi-supervised learning. In the last number of years the relaxation of this assumption has been explored and the importance of incorporation of additional information within machine learning algorithms became more apparent. Traditionally such fusion of information was the domain of semi-supervised learning. More recently the inclusion of knowledge from separate hypothetical spaces has been proposed by Vapnik as part of the supervised setting. In this work we are interested in exploring Vapnik's idea of master-class learning and the associated learning using privileged information, however within the unsupervised setting. Adoption of the advanced supervised learning paradigm for the unsupervised setting instigates investigation into the difference between privileged and technical data. By means of our proposed aRi-MAX method stability of the KMeans algorithm is improved and identification of the best clustering solution is achieved on an artificial dataset. Subsequently an information theoretic dot product based algorithm called P-Dot is proposed. This method has the ability to utilize a wide variety of clustering techniques, individually or in combination, while fusing privileged and technical data for improved clustering. Application of the P-Dot method to the task of digit recognition confirms our findings in a real-world scenario.


Fusion with Diffusion for Robust Visual Tracking

Neural Information Processing Systems

A weighted graph is used as an underlying structure of many algorithms like semi-supervised learning and spectral clustering. The edge weights are usually deter-mined by a single similarity measure, but it often hard if not impossible to capture all relevant aspects of similarity when using a single similarity measure. In par-ticular, in the case of visual object matching it is beneficial to integrate different similarity measures that focus on different visual representations. In this paper, a novel approach to integrate multiple similarity measures is pro-posed. First pairs of similarity measures are combined with a diffusion process on their tensor product graph (TPG). Hence the diffused similarity of each pair of ob-jects becomes a function of joint diffusion of the two original similarities, which in turn depends on the neighborhood structure of the TPG. We call this process Fusion with Diffusion (FD). However, a higher order graph like the TPG usually means significant increase in time complexity. This is not the case in the proposed approach. A key feature of our approach is that the time complexity of the dif-fusion on the TPG is the same as the diffusion process on each of the original graphs, Moreover, it is not necessary to explicitly construct the TPG in our frame-work. Finally all diffused pairs of similarity measures are combined as a weighted sum. We demonstrate the advantages of the proposed approach on the task of visual tracking, where different aspects of the appearance similarity between the target object in frame t and target object candidates in frame t+1 are integrated. The obtained method is tested on several challenge video sequences and the experimental results show that it outperforms state-of-the-art tracking methods.