Unsupervised or Indirectly Supervised Learning
AdaGAN: Boosting Generative Models
Tolstikhin, Ilya O., Gelly, Sylvain, Bousquet, Olivier, SIMON-GABRIEL, Carl-Johann, Schรถlkopf, Bernhard
Generative Adversarial Networks (GAN) are an effective method for training generative models of complex data such as natural images. However, they are notoriously hard to train and can suffer from the problem of missing modes where the model is not able to produce examples in certain regions of the space. We propose an iterative procedure, called AdaGAN, where at every step we add a new component into a mixture model by running a GAN algorithm on a re-weighted sample. This is inspired by boosting algorithms, where many potentially weak individual predictors are greedily aggregated to form a strong composite predictor. We prove analytically that such an incremental procedure leads to convergence to the true distribution in a finite number of steps if each step is optimal, and convergence at an exponential rate otherwise. We also illustrate experimentally that this procedure addresses the problem of missing modes.
ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching
Li, Chunyuan, Liu, Hao, Chen, Changyou, Pu, Yuchen, Chen, Liqun, Henao, Ricardo, Carin, Lawrence
We investigate the non-identifiability issues associated with bidirectional adversarial training for joint distribution matching. Within a framework of conditional entropy, we propose both adversarial and non-adversarial approaches to learn desirable matched joint distributions for unsupervised and supervised tasks. We unify a broad family of adversarial models as joint distribution matching problems. Our approach stabilizes learning of unsupervised bidirectional adversarial learning methods. Further, we introduce an extension for semi-supervised learning tasks. Theoretical results are validated in synthetic data and real-world applications.
Max-Margin Invariant Features from Transformed Unlabelled Data
Pal, Dipan, Kannan, Ashwin, Arakalgud, Gautam, Savvides, Marios
The study of representations invariant to common transformations of the data is important to learning. Most techniques have focused on local approximate invariance implemented within expensive optimization frameworks lacking explicit theoretical guarantees. In this paper, we study kernels that are invariant to a unitary group while having theoretical guarantees in addressing the important practical issue of unavailability of transformed versions of labelled data. A problem we call the Unlabeled Transformation Problem which is a special form of semi-supervised learning and one-shot learning. We present a theoretically motivated alternate approach to the invariant kernel SVM based on which we propose Max-Margin Invariant Features (MMIF) to solve this problem. As an illustration, we design an framework for face recognition and demonstrate the efficacy of our approach on a large scale semi-synthetic dataset with 153,000 images and a new challenging protocol on Labelled Faces in the Wild (LFW) while out-performing strong baselines.
Estimating Accuracy from Unlabeled Data: A Probabilistic Logic Approach
Platanios, Emmanouil, Poon, Hoifung, Mitchell, Tom M., Horvitz, Eric J.
We propose an efficient method to estimate the accuracy of classifiers using only unlabeled data. We consider a setting with multiple classification problems where the target classes may be tied together through logical constraints. For example, a set of classes may be mutually exclusive, meaning that a data instance can belong to at most one of them. The proposed method is based on the intuition that: (i) when classifiers agree, they are more likely to be correct, and (ii) when the classifiers make a prediction that violates the constraints, at least one classifier must be making an error. Experiments on four real-world data sets produce accuracy estimates within a few percent of the true accuracy, using solely unlabeled data. Our models also outperform existing state-of-the-art solutions in both estimating accuracies, and combining multiple classifier outputs. The results emphasize the utility of logical constraints in estimating accuracy, thus validating our intuition.
Fisher GAN
Generative Adversarial Networks (GANs) are powerful models for learning complex distributions. Stable training of GANs has been addressed in many recent works which explore different metrics between distributions. In this paper we introduce Fisher GAN that fits within the Integral Probability Metrics (IPM) framework for training GANs. Fisher GAN defines a data dependent constraint on the second order moments of the critic. We show in this paper that Fisher GAN allows for stable and time efficient training that does not compromise the capacity of the critic, and does not need data independent constraints such as weight clipping. We analyze our Fisher IPM theoretically and provide an algorithm based on Augmented Lagrangian for Fisher GAN. We validate our claims on both image sample generation and semi-supervised classification using Fisher GAN.
Label Efficient Learning of Transferable Representations acrosss Domains and Tasks
Luo, Zelun, Zou, Yuliang, Hoffman, Judy, Fei-Fei, Li F.
We propose a framework that learns a representation transferable across different domains and tasks in a data efficient manner. Our approach battles domain shift with a domain adversarial loss, and generalizes the embedding to novel task using a metric learning-based approach. Our model is simultaneously optimized on labeled source data and unlabeled or sparsely labeled data in the target domain. Our method shows compelling results on novel classes within a new domain even when only a few labeled examples per class are available, outperforming the prevalent fine-tuning approach. In addition, we demonstrate the effectiveness of our framework on the transfer learning task from image object recognition to video action recognition.
Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference
Kumar, Abhishek, Sattigeri, Prasanna, Fletcher, Tom
Semi-supervised learning methods using Generative adversarial networks (GANs) have shown promising empirical success recently. Most of these methods use a shared discriminator/classifier which discriminates real examples from fake while also predicting the class label. Motivated by the ability of the GANs generator to capture the data manifold well, we propose to estimate the tangent space to the data manifold using GANs and employ it to inject invariances into the classifier. In the process, we propose enhancements over existing methods for learning the inverse mapping (i.e., the encoder) which greatly improves in terms of semantic similarity of the reconstructed sample with the input sample. We observe considerable empirical gains in semi-supervised learning over baselines, particularly in the cases when the number of labeled examples is low. We also provide insights into how fake examples influence the semi-supervised learning procedure.
Learning Graph Representations with Embedding Propagation
Duran, Alberto Garcia, Niepert, Mathias
We propose Embedding Propagation (EP), an unsupervised learning framework for graph-structured data. EP learns vector representations of graphs by passing two types of messages between neighboring nodes. Forward messages consist of label representations such as representations of words and other attributes associated with the nodes. Backward messages consist of gradients that result from aggregating the label representations and applying a reconstruction loss. Node representations are finally computed from the representation of their labels. With significantly fewer parameters and hyperparameters an instance of EP is competitive with and often outperforms state of the art unsupervised and semi-supervised learning methods on a range of benchmark data sets.
On the Effectiveness of Least Squares Generative Adversarial Networks
Mao, Xudong, Li, Qing, Xie, Haoran, Lau, Raymond Y. K., Wang, Zhen, Smolley, Stephen Paul
Unsupervised learning with generative adversarial networks (GANs) has proven hugely successful. Regular GANs hypothesize the discriminator as a classifier with the sigmoid cross entropy loss function. However, we found that this loss function may lead to the vanishing gradients problem during the learning process. To overcome such a problem, we propose in this paper the Least Squares Generative Adversarial Networks (LSGANs) which adopt the least squares loss function for the discriminator. We show that minimizing the objective function of LSGAN yields minimizing the Pearson $\chi^2$ divergence. We also present a theoretical analysis about the properties of LSGANs and $\chi^2$ divergence. There are two benefits of LSGANs over regular GANs. First, LSGANs are able to generate higher quality images than regular GANs. Second, LSGANs perform more stable during the learning process. For evaluating the image quality, we train LSGANs on several datasets including LSUN and a cat dataset, and the experimental results show that the images generated by LSGANs are of better quality than the ones generated by regular GANs. Furthermore, we evaluate the stability of LSGANs in two groups. One is to compare between LSGANs and regular GANs without gradient penalty. We conduct three experiments, including Gaussian mixture distribution, difficult architectures, and a new proposed method --- datasets with small variance, to illustrate the stability of LSGANs. The other one is to compare between LSGANs with gradient penalty and WGANs with gradient penalty (WGANs-GP). The experimental results show that LSGANs with gradient penalty succeed in training for all the difficult architectures used in WGANs-GP, including 101-layer ResNet.