Unsupervised or Indirectly Supervised Learning
Unsupervised Data Augmentation for Consistency Training
Semi-supervised learning lately has shown much promise in improving deep learning models when labeled data is scarce. Common among recent approaches is the use of consistency training on a large amount of unlabeled data to constrain model predictions to be invariant to input noise. In this work, we present a new perspective on how to effectively noise unlabeled examples and argue that the quality of noising, specifically those produced by advanced data augmentation methods, plays a crucial role in semi-supervised learning. By substituting simple noising operations with advanced data augmentation methods such as RandAugment and back-translation, our method brings substantial improvements across six language and three vision tasks under the same consistency training framework. On the IMDb text classification dataset, with only 20 labeled examples, our method achieves an error rate of 4.20, outperforming the state-of-the-art model trained on 25,000 labeled examples.
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering
Graph based semi-supervised learning is the problem of learning a labeling function for the graph nodes given a few example nodes, often called seeds, usually under the assumption that the graph's edges indicate similarity of labels. This is closely related to the local graph clustering or community detection problem of finding a cluster or community of nodes around a given seed. For this problem, we propose a novel generalization of random walk, diffusion, or smooth function methods in the literature to a convex p-norm cut function. The need for our p-norm methods is that, in our study of existing methods, we find those principled methods based on eigenvector, spectral, random walk, or linear system often have difficulty capturing the correct boundary of a target label or target cluster. In contrast, 1-norm or maxflow-mincut based methods capture the boundary, but cannot grow from small seed set; hybrid procedures that use both have many hard to set parameters.
Unsupervised Learning of Dense Visual Representations
Contrastive self-supervised learning has emerged as a promising approach to unsupervised visual representation learning. In general, these methods learn global (image-level) representations that are invariant to different views (i.e., compositions of data augmentation) of the same image. However, many visual understanding tasks require dense (pixel-level) representations. In this paper, we propose View-Agnostic Dense Representation (VADeR) for unsupervised learning of dense representations. VADeR learns pixelwise representations by forcing local features to remain constant over different viewing conditions.
Characterizing the Impacts of Semi-supervised Learning for Weak Supervision
Labeling training data is a critical and expensive step in producing high accuracy ML models, whether training from scratch or fine-tuning. To make labeling more efficient, two major approaches are programmatic weak supervision (WS) and semi-supervised learning (SSL). More recent works have either explicitly or implicitly used techniques at their intersection, but in various complex and ad hoc ways. In this work, we define a simple, modular design space to study the use of SSL techniques for WS more systematically. Surprisingly, we find that fairly simple methods from our design space match the performance of more complex state-of-the-art methods, averaging a 3 p.p. increase in accuracy/F1-score across 8 standard WS benchmarks.
Masked Generative Adversarial Networks are Data-Efficient Generation Learners
This paper shows that masked generative adversarial network (MaskedGAN) is robust image generation learners with limited training data. The idea of MaskedGAN is simple: it randomly masks out certain image information for effective GAN training with limited data. We develop two masking strategies that work along orthogonal dimensions of training images, including a shifted spatial masking that masks the images in spatial dimensions with random shifts, and a balanced spectral masking that masks certain image spectral bands with self-adaptive probabilities. The two masking strategies complement each other which together encourage more challenging holistic learning from limited training data, ultimately suppressing trivial solutions and failures in GAN training. Albeit simple, extensive experiments show that MaskedGAN achieves superior performance consistently across different network architectures (e.g., CNNs including BigGAN and StyleGAN-v2 and Transformers including TransGAN and GANformer) and datasets (e.g., CIFAR-10, CIFAR-100, ImageNet, 100-shot, AFHQ, FFHQ and Cityscapes).
Continuous Partitioning for Graph-Based Semi-Supervised Learning
Laplace learning algorithms for graph-based semi-supervised learning have been shown to produce degenerate predictions at low label rates and in imbalanced class regimes, particularly near class boundaries. We propose CutSSL: a framework for graph-based semi-supervised learning based on continuous nonconvex quadratic programming, which provably obtains \emph{integer} solutions. Our framework is naturally motivated by an \emph{exact} quadratic relaxation of a cardinality-constrained minimum-cut graph partitioning problem. Furthermore, we show our formulation is related to an optimization problem whose approximate solution is the mean-shifted Laplace learning heuristic, thus providing new insight into the performance of this heuristic. We demonstrate that CutSSL significantly surpasses the current state-of-the-art on k-nearest neighbor graphs and large real-world graph benchmarks across a variety of label rates, class imbalance, and label imbalance regimes.
FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. This domain has seen fast progress recently, at the cost of requiring more complex methods. In this paper we propose FixMatch, an algorithm that is a significant simplification of existing SSL methods. FixMatch first generates pseudo-labels using the model's predictions on weakly-augmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction.
SOLA-GCL: Subgraph-Oriented Learnable Augmentation Method for Graph Contrastive Learning
Peng, Tianhao, Li, Xuhong, Yuan, Haitao, Li, Yuchen, Xiong, Haoyi
Graph contrastive learning has emerged as a powerful technique for learning graph representations that are robust and discriminative. However, traditional approaches often neglect the critical role of subgraph structures, particularly the intra-subgraph characteristics and inter-subgraph relationships, which are crucial for generating informative and diverse contrastive pairs. These subgraph features are crucial as they vary significantly across different graph types, such as social networks where they represent communities, and biochemical networks where they symbolize molecular interactions. To address this issue, our work proposes a novel subgraph-oriented learnable augmentation method for graph contrastive learning, termed SOLA-GCL, that centers around subgraphs, taking full advantage of the subgraph information for data augmentation. Specifically, SOLA-GCL initially partitions a graph into multiple densely connected subgraphs based on their intrinsic properties. To preserve and enhance the unique characteristics inherent to subgraphs, a graph view generator optimizes augmentation strategies for each subgraph, thereby generating tailored views for graph contrastive learning. This generator uses a combination of intra-subgraph and inter-subgraph augmentation strategies, including node dropping, feature masking, intra-edge perturbation, inter-edge perturbation, and subgraph swapping. Extensive experiments have been conducted on various graph learning applications, ranging from social networks to molecules, under semi-supervised learning, unsupervised learning, and transfer learning settings to demonstrate the superiority of our proposed approach over the state-of-the-art in GCL.
Uncertainty-aware Long-tailed Weights Model the Utility of Pseudo-labels for Semi-supervised Learning
Wu, Jiaqi, Pang, Junbiao, Huang, Qingming
Current Semi-supervised Learning (SSL) adopts the pseudo-labeling strategy and further filters pseudo-labels based on confidence thresholds. However, this mechanism has notable drawbacks: 1) setting the reasonable threshold is an open problem which significantly influences the selection of the high-quality pseudo-labels; and 2) deep models often exhibit the over-confidence phenomenon which makes the confidence value an unreliable indicator for assessing the quality of pseudo-labels due to the scarcity of labeled data. In this paper, we propose an Uncertainty-aware Ensemble Structure (UES) to assess the utility of pseudo-labels for unlabeled samples. We further model the utility of pseudo-labels as long-tailed weights to avoid the open problem of setting the threshold. Concretely, the advantage of the long-tailed weights ensures that even unreliable pseudo-labels still contribute to enhancing the model's robustness. Besides, UES is lightweight and architecture-agnostic, easily extending to various computer vision tasks, including classification and regression. Experimental results demonstrate that combining the proposed method with DualPose leads to a 3.47% improvement in Percentage of Correct Keypoints (PCK) on the Sniffing dataset with 100 data points (30 labeled), a 7.29\% improvement in PCK on the FLIC dataset with 100 data points (50 labeled), and a 3.91% improvement in PCK on the LSP dataset with 200 data points (100 labeled). Furthermore, when combined with FixMatch, the proposed method achieves a 0.2% accuracy improvement on the CIFAR-10 dataset with 40 labeled data points and a 0.26% accuracy improvement on the CIFAR-100 dataset with 400 labeled data points.
Revisiting semi-supervised learning in the era of foundation models
Zhang, Ping, Mai, Zheda, Nguyen, Quang-Huy, Chao, Wei-Lun
Semi-supervised learning (SSL) leverages abundant unlabeled data alongside limited labeled data to enhance learning. As vision foundation models (VFMs) increasingly serve as the backbone of vision applications, it remains unclear how SSL interacts with these pre-trained models. To address this gap, we develop new SSL benchmark datasets where frozen VFMs underperform and systematically evaluate representative SSL methods. We make a surprising observation: parameter-efficient fine-tuning (PEFT) using only labeled data often matches SSL performance, even without leveraging unlabeled data. This motivates us to revisit self-training, a conceptually simple SSL baseline, where we use the supervised PEFT model to pseudo-label unlabeled data for further training. To overcome the notorious issue of noisy pseudo-labels, we propose ensembling multiple PEFT approaches and VFM backbones to produce more robust pseudo-labels. Empirical results validate the effectiveness of this simple yet powerful approach, providing actionable insights into SSL with VFMs and paving the way for more scalable and practical semi-supervised learning in the era of foundation models.