Unsupervised or Indirectly Supervised Learning
Big Self-Supervised Models are Strong Semi-Supervised Learners
One paradigm for learning from few labeled examples while making best use of a large amount of unlabeled data is unsupervised pretraining followed by supervised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic way, in contrast to common approaches to semi-supervised learning for computer vision, we show that it is surprisingly effective for semi-supervised learning on ImageNet. A key ingredient of our approach is the use of big (deep and wide) networks during pretraining and fine-tuning. We find that, the fewer the labels, the more this approach (task-agnostic use of unlabeled data) benefits from a bigger network. After fine-tuning, the big network can be further improved and distilled into a much smaller one with little loss in classification accuracy by using the unlabeled examples for a second time, but in a task-specific way. The proposed semi-supervised learning algorithm can be summarized in three steps: unsupervised pretraining of a big ResNet model using SimCLRv2, supervised fine-tuning on a few labeled examples, and distillation with unlabeled examples for refining and transferring the task-specific knowledge. This procedure achieves 73.9% ImageNet top-1 accuracy with just 1% of the labels ( 13 labeled images per class) using ResNet-50, a 10 improvement in label efficiency over the previous state-of-theart. With 10% of labels, ResNet-50 trained with our method achieves 77.5% top-1 accuracy, outperforming standard supervised training with all of the labels.
Multi-step learning and underlying structure in statistical models
In multi-step learning, where a final learning task is accomplished via a sequence of intermediate learning tasks, the intuition is that successive steps or levels transform the initial data into representations more and more suited" to the final learning task. A related principle arises in transfer-learning where Baxter (2000) proposed a theoretical framework to study how learning multiple tasks transforms the inductive bias of a learner. The most widespread multi-step learning approach is semi-supervised learning with two steps: unsupervised, then supervised. Several authors (Castelli-Cover, 1996; Balcan-Blum, 2005; Niyogi, 2008; Ben-David et al, 2008; Urner et al, 2011) have analyzed SSL, with Balcan-Blum (2005) proposing a version of the PAC learning framework augmented by a compatibility function" to link concept class and unlabeled data distribution. We propose to analyze SSL and other multi-step learning approaches, much in the spirit of Baxter's framework, by defining a learning problem generatively as a joint statistical model on X \times Y .
Dense Unsupervised Learning for Video Segmentation Nikita Araslanov Simone Schaub-Meyer 1 Stefan Roth Department of Computer Science, TU Darmstadt
We present a novel approach to unsupervised learning for video object segmentation (VOS). Unlike previous work, our formulation allows to learn dense feature representations directly in a fully convolutional regime. We rely on uniform grid sampling to extract a set of anchors and train our model to disambiguate between them on both inter-and intra-video levels. However, a naive scheme to train such a model results in a degenerate solution. We propose to prevent this with a simple regularisation scheme, accommodating the equivariance property of the segmentation task to similarity transformations. Our training objective admits efficient implementation and exhibits fast training convergence. On established VOS benchmarks, our approach exceeds the segmentation accuracy of previous work despite using significantly less training data and compute power.
4d2aa4c034745f558bfea34643c8d6a6-Paper-Conference.pdf
Federated Learning (FL) is a distributed machine learning framework that trains accurate global models while preserving clients' privacy-sensitive data. However, most FL approaches assume that clients possess labeled data, which is often not the case in practice. Federated Semi-Supervised Learning (FSSL) addresses this label deficiency problem, targeting situations where only the server has a small amount of labeled data while clients do not. However, a significant performance gap exists between Centralized Semi-Supervised Learning (SSL) and FSSL. This gap arises from confirmation bias, which is more pronounced in FSSL due to multiple local training epochs and the separation of labeled and unlabeled data.
Gizem Yรผce
Prior theoretical and empirical works have established that semi-supervised learning algorithms can leverage the unlabeled data to improve over the labeled sample complexity of supervised learning (SL) algorithms. However, existing theoretical work focuses on regimes where the unlabeled data is sufficient to learn a good decision boundary using unsupervised learning (UL) alone. This begs the question: Can SSL algorithms simultaneously improve upon both UL and SL? To this end, we derive a tight lower bound for 2-Gaussian mixture models that explicitly depends on the labeled and the unlabeled dataset size as well as the signal-to-noise ratio of the mixture distribution. Surprisingly, our result implies that no SSL algorithm improves upon the minimax-optimal statistical error rates of SL or UL algorithms for these distributions. Nevertheless, in our real-world experiments, SSL algorithms can often outperform UL and SL algorithms. In summary, our work suggests that while it is possible to prove the performance gains of SSL algorithms, this would require careful tracking of constants in the theoretical analysis.
Gizem Yรผce
Prior theoretical and empirical works have established that semi-supervised learning algorithms can leverage the unlabeled data to improve over the labeled sample complexity of supervised learning (SL) algorithms. However, existing theoretical work focuses on regimes where the unlabeled data is sufficient to learn a good decision boundary using unsupervised learning (UL) alone. This begs the question: Can SSL algorithms simultaneously improve upon both UL and SL? To this end, we derive a tight lower bound for 2-Gaussian mixture models that explicitly depends on the labeled and the unlabeled dataset size as well as the signal-to-noise ratio of the mixture distribution. Surprisingly, our result implies that no SSL algorithm improves upon the minimax-optimal statistical error rates of SL or UL algorithms for these distributions. Nevertheless, in our real-world experiments, SSL algorithms can often outperform UL and SL algorithms. In summary, our work suggests that while it is possible to prove the performance gains of SSL algorithms, this would require careful tracking of constants in the theoretical analysis.
Dynamic Distillation Network for Cross-Domain Few-Shot Recognition with Unlabeled Data
Most existing works in few-shot learning rely on meta-learning the network on a large base dataset which is typically from the same domain as the target dataset. We tackle the problem of cross-domain few-shot learning where there is a large shift between the base and target domain. The problem of cross-domain few-shot recognition with unlabeled target data is largely unaddressed in the literature. STARTUP was the first method that tackles this problem using self-training. However, it uses a fixed teacher pretrained on a labeled base dataset to create soft labels for the unlabeled target samples.
Learning Graph Representations with Embedding Propagation
We propose EP, Embedding Propagation, an unsupervised learning framework for graph-structured data. EP learns vector representations of graphs by passing two types of messages between neighboring nodes. Forward messages consist of label representations such as representations of words and other attributes associated with the nodes. Backward messages consist of gradients that result from aggregating the label representations and applying a reconstruction loss. Node representations are finally computed from the representation of their labels.
Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference
Semi-supervised learning methods using Generative adversarial networks (GANs) have shown promising empirical success recently. Most of these methods use a shared discriminator/classifier which discriminates real examples from fake while also predicting the class label. Motivated by the ability of the GANs generator to capture the data manifold well, we propose to estimate the tangent space to the data manifold using GANs and employ it to inject invariances into the classifier. In the process, we propose enhancements over existing methods for learning the inverse mapping (i.e., the encoder) which greatly improves in terms of semantic similarity of the reconstructed sample with the input sample. We observe considerable empirical gains in semi-supervised learning over baselines, particularly in the cases when the number of labeled examples is low.