Unsupervised or Indirectly Supervised Learning


Unsupervised learning of an efficient short-term memory network

Neural Information Processing Systems

Learning in recurrent neural networks has been a topic fraught with difficulties and problems. We here report substantial progress in the unsupervised learning of recurrent networks that can keep track of an input signal. Specifically, we show how these networks can learn to efficiently represent their present and past inputs, based on local learning rules only. Our results are based on several key insights. First, we develop a local learning rule for the recurrent weights whose main aim is to drive the network into a regime where, on average, feedforward signal inputs are canceled by recurrent inputs.


Learning from Label Proportions with Generative Adversarial Networks

Neural Information Processing Systems

In this paper, we leverage generative adversarial networks (GANs) to derive an effective algorithm LLP-GAN for learning from label proportions (LLP), where only the bag-level proportional information in labels is available. Endowed with end-to-end structure, LLP-GAN performs approximation in the light of an adversarial learning mechanism, without imposing restricted assumptions on distribution. Accordingly, we can directly induce the final instance-level classifier upon the discriminator. Under mild assumptions, we give the explicit generative representation and prove the global optimality for LLP-GAN. Additionally, compared with existing methods, our work empowers LLP solver with capable scalability inheriting from deep models.


Triangle Generative Adversarial Networks

Neural Information Processing Systems

A Triangle Generative Adversarial Network ($\Delta$-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by only a few paired samples. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs.


Fast and Scalable Training of Semi-Supervised CRFs with Application to Activity Recognition

Neural Information Processing Systems

We present a new and efficient semi-supervised training method for parameter estimation and feature selection in conditional random fields (CRFs). In real-world applications such as activity recognition, unlabeled sensor traces are relatively easy to obtain whereas labeled examples are expensive and tedious to collect. Furthermore, the ability to automatically select a small subset of discriminatory features from a large pool can be advantageous in terms of computational speed as well as accuracy. In this paper, we introduce the semi-supervised virtual evidence boosting (sVEB) algorithm for training CRFs -- a semi-supervised extension to the recently developed virtual evidence boosting (VEB) method for feature selection and parameter learning. Semi-supervised VEB takes advantage of the unlabeled data via minimum entropy regularization -- the objective function combines the unlabeled conditional entropy with labeled conditional pseudo-likelihood.


Regularized Boost for Semi-Supervised Learning

Neural Information Processing Systems

Semi-supervised inductive learning concerns how to learn a decision rule from a data set containing both labeled and unlabeled data. Several boosting algorithms have been extended to semi-supervised learning with various strategies. To our knowledge, however, none of them takes local smoothness constraints among data into account during ensemble learning. In this paper, we introduce a local smoothness regularizer to semi-supervised boosting algorithms based on the universal optimization framework of margin cost functionals. Our regularizer is applicable to existing semi-supervised boosting algorithms to improve their generalization and speed up their training.


Selecting Receptive Fields in Deep Networks

Neural Information Processing Systems

Recent deep learning and unsupervised feature learning systems that learn from unlabeled data have achieved high performance in benchmarks by using extremely large architectures with many features (hidden units) at each layer. Unfortunately, for such large architectures the number of parameters usually grows quadratically in the width of the network, thus necessitating hand-coded "local receptive fields" that limit the number of connections from lower level features to higher ones (e.g., based on spatial locality). In this paper we propose a fast method to choose these connections that may be incorporated into a wide variety of unsupervised training methods. Specifically, we choose local receptive fields that group together those low-level features that are most similar to each other according to a pairwise similarity metric. This approach allows us to harness the advantages of local receptive fields (such as improved scalability, and reduced data requirements) when we do not know how to specify such receptive fields by hand or where our unsupervised training algorithm has no obvious generalization to a topographic setting.


Optimal Scoring for Unsupervised Learning

Neural Information Processing Systems

We are often interested in casting classification and clustering problems in a regression framework, because it is feasible to achieve some statistical properties in this framework by imposing some penalty criteria. In this paper we illustrate optimal scoring, which was originally proposed for performing Fisher linear discriminant analysis by regression, in the application of unsupervised learning. In particular, we devise a novel clustering algorithm that we call optimal discriminant clustering (ODC). Thus, our work shows that optimal scoring provides a new approach to the implementation of unsupervised learning. Papers published at the Neural Information Processing Systems Conference.


Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization

Neural Information Processing Systems

The cluster assumption is exploited by most semi-supervised learning (SSL) methods. However, if the unlabeled data is merely weakly related to the target classes, it becomes questionable whether driving the decision boundary to the low density regions of the unlabeled data will help the classification. In such case, the cluster assumption may not be valid; and consequently how to leverage this type of unlabeled data to enhance the classification accuracy becomes a challenge. We introduce Semi-supervised Learning with Weakly-Related Unlabeled Data" (SSLW), an inductive method that builds upon the maximum-margin approach, towards a better usage of weakly-related unlabeled information. Although the SSLW could improve a wide range of classification tasks, in this paper, we focus on text categorization with a small training pool. The key assumption behind this work is that, even with different topics, the word usage patterns across different corpora tends to be consistent. To this end, SSLW estimates the optimal word-correlation matrix that is consistent with both the co-occurrence information derived from the weakly-related unlabeled documents and the labeled documents. For empirical evaluation, we present a direct comparison with a number of state-of-the-art methods for inductive semi-supervised learning and text categorization; and we show that SSLW results in a significant improvement in categorization accuracy, equipped with a small training set and an unlabeled resource that is weakly related to the test beds."


Unsupervised learning models of primary cortical receptive fields and receptive field plasticity

Neural Information Processing Systems

The efficient coding hypothesis holds that neural receptive fields are adapted to the statistics of the environment, but is agnostic to the timescale of this adaptation, which occurs on both evolutionary and developmental timescales. In this work we focus on that component of adaptation which occurs during an organism's lifetime, and show that a number of unsupervised feature learning algorithms can account for features of normal receptive field properties across multiple primary sensory cortices. Furthermore, we show that the same algorithms account for altered receptive field properties in response to experimentally altered environmental statistics. Based on these modeling results we propose these models as phenomenological models of receptive field plasticity during an organism's lifetime. Finally, due to the success of the same models in multiple sensory areas, we suggest that these algorithms may provide a constructive realization of the theory, first proposed by Mountcastle (1978), that a qualitatively similar learning algorithm acts throughout primary sensory cortices.


A Rate Distortion Approach for Semi-Supervised Conditional Random Fields

Neural Information Processing Systems

We propose a novel information theoretic approach for semi-supervised learning of conditional random fields. Our approach defines a training objective that combines the conditional likelihood on labeled data and the mutual information on unlabeled data. Different from previous minimum conditional entropy semi-supervised discriminative learning methods, our approach can be naturally cast into the rate distortion theory framework in information theory. We analyze the tractability of the framework for structured prediction and present a convergent variational training algorithm to defy the combinatorial explosion of terms in the sum over label configurations. Papers published at the Neural Information Processing Systems Conference.